Action Plan Meeting of ICAR-KVK, Haveri

Presented by

Dr. Ashoka P

Senior Scientist & Head Krishi Vigyan Kendra, Hanumanamatti

Krishi Vigyan Kendra, Hanumanamatti (Haveri)

	District Features
Agro-climatic zone name	Northern transitional zone (Zone-VIII) Haveri, Byadgi, Hirekerur, Ranebennur, Savanur, Shiggaon, Rattihalli Hilly zone (Zone-IX) Hangal
No. of Taluks	08
No. of Villages	698
No. of Holdings	2,60,283
Gross cropped area (Ha)	4,85,000
Area under irrigation (%)	14
Sources of irrigation	TanksBore wellsCanals
Major Soil Types	 Red loamy soil Medium deep black soil Deep Black soil Shallow Red soil

KVK Manpower and facilities

05

03

Total Area (Ha) 20.00

No. of SMSs in position

KVK Farm details

Laboratories details

position

No. of Prog. Assistants in

Cultivated Area (Ha)	17.80	
Demo Unit details	1. Dairy (HF x Deoni cross breed): 24 Animals 2. Fodder bank (0.40 ha) : 11 varieties (Co-4,Co-3, DHN-6,NB-21, BH-18, APBN-1, IGFRI-3, IGFRI-7, Guinea grass),COFS—29 perennial sorghum,Napier grass 3. Millet cafeteria (Proso, Foxtail, Kodo & Little) 4. Sheep Unit (Decani & Rambullet): 37 No's	
Production Units	•	: 2 Unit (20 pits) : 07 (Milch animals)

3. Trichoderma

2. Bio control Lab (*Trichoderma*)

(EC & pH)

(Average milk production: 7.5 lt/animal/day)

: 1 Unit

1. Soil (N,P,K, EC & pH, Micro nutrients) & water testing

STAFF POSITION

	Sr. Scientist & He	ead Scientist	Prog. Asst.	Admn.	Auxillary	Supporting	Total
Sanctioned	1	6	3	2	2	2	16
Filled	1	5	2	1	1	1	11
Vacant	0	1	1	1	1	1	05

Sl. No.	Designation	Name of the incumbent	Remarks
1	Sr. Scientist & Head	Dr. P. Ashoka	
2	Scientist (Home Science)	-	Vacant
3	Scientist (Ag. Ento.)	Dr. K. P. Gunndannavar	
4	Scientist (Horticulture)	Mr. Harish D. K	
5	Scientist (Animal Science)	Dr. Venkanna Balaganur	
6	Scientist (Agronomy)	Dr. Shivamuruty D	
7	Scientist (Soil Science)	Dr. Kumara B H	
8	Programme Assistant (Lab Tech.)	Mr. Kishna Naik L	
9	Programme Assistant (Computer)	-	Vacant
10	Farm Manager	Mr.Kallesh D T	Study leave
11	Assistant	-	Vacant
12	Jr. Stenographer	Shivappa Hanni	
13	Driver (LV)	Santosh Naik	
14	Driver (HV)	Vacant	Vacant
15	Supporting staff	K. B. Belakeri	
16	Supporting staff	-	Vacant

Agro-climatic Zones of the District

Northern transitional Haveri zone (Zone-VIII)

Agro-Climatic **Zones**

> Characteri stics

Hilly zone (Zone-IX)

Hanagak

Byadgi

Hirekerur

Ranebennur

Savanur

Shiggaon

Rattihalli

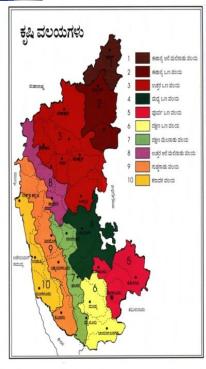
•Rainfall: 618.4 to 1303.2 mm

•Soils:

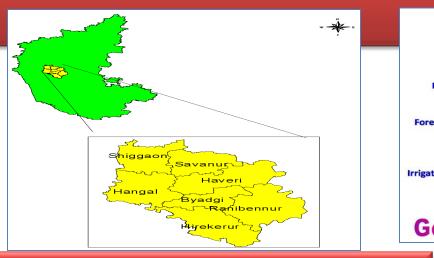
Shallow to medium black clay soils and red sandy loamy soils in equal proportion.

•Major crops :

Maize, Bt-cotton, Redgram, Greengram. Rabi Jowar, Paddy, Millets, arecanut based mixed crops of spices & Sericulture


•Rainfall:

904.4 to 3695.1


•Soils:


Red clay loamy soils in major areas.

Major crops: paddy, groundnut, pulses and arecanut & coconut based cropping system

Haveri District Agriculture Profile

Major Crops (ha)

Pulse Oil seeds Commercial Horticulture Cereals Maize Pigeon pea Groundnut Cotton Mango (143000)(4500)(18000)(72200)(500)Chick pea Soybean Banana Rice Sugarcane (49300)(6210)(5600)(6000)(2125)Greengram Jowar Chilli Sunflower Onion (2105)(7225)(2200)(1200)(43000)

No. of Population of Livestock

• Crossbred : 56747
• Indigenous :235402

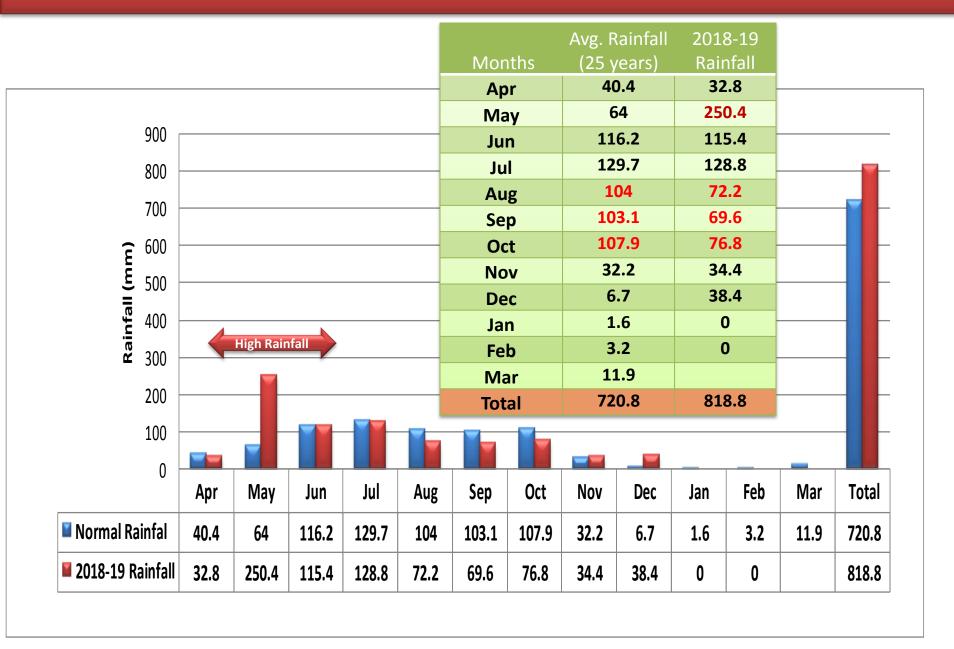
Buffalo
• 113847

• Crossbred :282
• Indigenous :317902

Goats
• 150650

• Indigenous:6827

• 250


6

Rabbits

Rivers

- Tungabhadra (Ranebennur, Byadgi)
- Kumudwati (Hirekerur)
- Varada (Haveri)
- Dharma (Hangal)

Rainfall details of Haveri district 2018-19

Distribution of land holdings in Haveri district

Sl. No	Description	Area (ha)	Number of land holdings
1	Marginal farmers (< 1ha)	35506	64297
2	Small farmers (1-2ha)	104261	72117
3	Medium –large farmers (>2ha)	241900	64008
	Total number of farmers	381667	200422

Area, production, productivity, of major crops cultivation in Haveri district

(DAG, 2015-16)

Sl.No	Crop	Area (ha)	Production (t)	Productivity (kg/ha)
1	Maize	170696	265188	1609
2	Rabi sorghum	35186	26027	733
3	Cotton	84424	129473	353
4	Paddy	44968	57599	1196
5	Sugarcane	14826	372026	69 (t)
6	Groundnut	17789	13398	611
7	Horse gram	4275	951	221

Production and Productivity f Livestock and Poultry in Haveri district

Category	Population	Production	Productivity
Cattle			
Crossbred	60	53000	5.728/day
Indigenous	225	35000	2.335/day
Buffalo	98	42000	2.508/day
Sheep			
Crossbred			
Indigenous	265700	-	-
Goats	150500	-	-
Poultry birds (egg production)	515300	-	_

Doubling the farmers income in Haveri District-2022

Based on area & production:

- Field crops, Horticulture, and cash crops taken in to consideration
- ➤In livestock- fodder, cattle, buffalo, poultry and fishery production is taken into consideration

To prepare DFI documents

- **►** Information collected from
 - **✓ KVK Scientists field visits and interaction**
 - ✓ Officials of line departments and other related institutes
 - **✓** Progressive farmers opinion
 - **✓** District statistics
 - **✓NGOs**

At Cluster and village level

- > Documented major crops/ enterprise practiced
- > Prepared list of problems related to soil to post harvest
- > Enlisted possible solutions/ technological solution
- ➤ And categorized them in based on DFI themes

- What is to be doubled
 - Income of farmers
 - Not farm incomes only, not the output or the income of the sector or the value added or GDP of agriculture sector
 - Strategies for Improving Farmers' Income-PPM
 - Production Centric
 - **❖ Post-harvest Management Centric**
 - Marketing Related
- Agricultural household activities

- 1)comprise of Crop sector (field crops and horticulture)
- 2)Livestock sector (dairy, poultry, piggery, small ruminants)
- 3) Farm linked activities (mushroom, beekeeping, sericulture)
- 4)Post production activities (off-farm enterprises)

PRODUCTIVITY GAPS AND MAJOR CONSTRAINTS IN FIELD CROPS

Crop	Deficit s	ituation	Normal situation		Constraints for below potential
	Existing	Potential	Existing	Potential	yield level
Maize	29.5 q/ha	40 q/ha	34.6 q/ha	60 q/ha	Lack of knowledge about intercropping with pulses Lack of knowledge about application of micronutrients Improper use of fertilizer Lack of knowledge on appropriate production technology Low market price
Bt-Cotton	4.5 q/ha	20 q/ha	5.16 q/ha	28 q/ha	Moisture stress in critical stages Incidence of leaf reddening Improper use of fertilizer Higher incidence of pest and disease. Lack of knowledge about seed

Crop	Deficit	situation	Normal si	tuation	Constraints for below potential yield level
	Existing	Potential	Existing	Potential	yieiu ievei
Paddy	22.35q/ha	30 q/ha	25.13 q/ha	65 q/ha	Lack of knowledge about seed treatment
					Indiscriminate use of fertilizers and pesticides
					High incidence of weeds
					Use of local variety
Rabi	8.8 q/ha	12 q/ha	9.83 q/ha	25 q/ha	Use of local varieties
Sorghum					Moisture stress
					Imbalanced Nutrient
				Management	
					Use of local variety
					Lack of knowledge about seed treatment with bio-fertilizers

Current productivity and increase in productivity of existing crops by next three years in Haveri District

1. Cereals

Crops	Existing Productivity (q/ha)	Productivity after 3 years (q/ha)
Maize	65 (I) and 40 (RF)	68-70(I) and 42-44 (RF)
Jowar	Kharif: 22 (RF), 10.5 0 (I) Rabi: 41 q (I)	Kharif 27-29 (RF), 13-15 (I) Rabi: 50 :q (I)
Paddy(I)	52	63-65

2. Millets

Crops	Existing Productivity (q/ha)	Productivity after 3 years (q/ha)
Foxtail millet	16	20 -21
Little millet	15	19-20
Finger millet	16	21-22

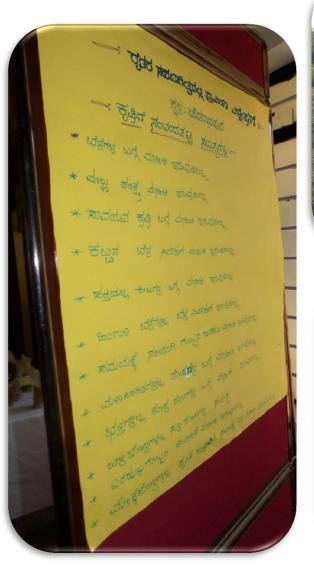
* RF: Rainfed, I: Irrigated

3. Pulses

Crops	Existing Productivity (q/ha)	Productivity after 3 years (q/ha)
Redgram	10.50	12-13
Horse gram	7.50	10 -12
Green gram	6.50	9-11
Cowpea	7.50	10-11
Chickpea	7.00	9-10

4. Oilseeds

Crops	Existing Productivity (q/ha)	Productivity after 3 years (q/ha)
Ground nut	21 q	23-25 q
Sunflower	16 q	20 -21q
Safflower	8 q	11-13
Soybean	16.75 q (RF)	25-26 q (I), 20-22 q (RF)


5.Commercial crops

Crops	Existing Productivity (ha)	Productivity after 3 years (ha)
Bt-Cotton	21 q	24-26 q
Sugarcane	170 t	200 -210 t

DFI Vision-Strategy:

- Irrigation- "Per Drop, More Crop"
- ❖ Quality seeds-Improving seed replacement rate Soil test based nutrient management- Distribution of soil health cards
- ❖ Post-harvest crop losses- Large investments in warehousing and cold chains
- Value addition to farmers
- Creation of a national agricultural market, removing distortions and eplatform across markets.
- ❖ New crop insurance scheme Pradhan Mantri Fasal Bima Yojana, Minimum Premium and Maximum Security.
- Promotion of ancillary activities- poultry, sericulture, beekeeping and fisheries

PRA activities in different Cluster

PRA –Problems assessed

- Low yield in Cereals, Pulses, Oil seeds, Cash crops and Lack of good varieties/ seed availability
- Micro nutrient deficiency in maize (40%), paddy (25%) and sugarcane(16%).
- Lack of availability of good quality seeds in onion & millets
- Wilt incidence in Betelvine (10-15 %)
- Leaf curl in chilli (40-50%)
- Low yield (40%) due to flower and fruit dropping in mango
- Lack of knowledge on fodder crops / grasses
- Imbalanced feed formulation for dairying
- Lack of knowledge on value addition in millets and Processing of seeds.
- Lack of awareness regarding Terrace gardening and compost making at house hold level

Thrust areas

- INM in Maize and paddy
- ICM in Paddy, Rabi sorghum, Sugarcane and Bt-Cotton
- ICM in Redgram, Bengalgram, Black gram
- IPDM in Mango, Onion, Betelvine
- Animal nutrition management
- Drudgery reduction
- Food security through Terrace garden

Army worm incidence on maize in Haveri district

> Incidence of army worm has been noticed on maize in different Talukas of Haveri dist.

► Incidence range from 40-80 %

Complete defoliation by **Army worm**

Method Demonstration on

preparation of poison bait for the

management of army worm

defoliation

bait for the affected field

Congregation of Army worm on cob after

Application of poison

ಉದಯವಾಣಿ

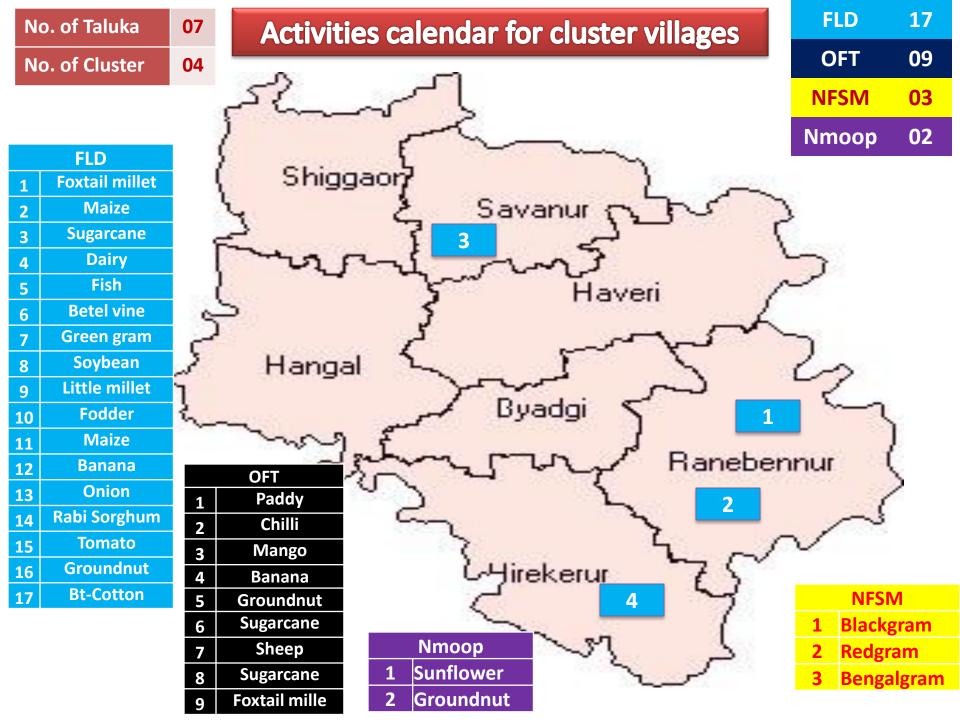
ಕೀಟ ನಿಯಂತ್ರಣಕ್ಕೆ ವಿಷಪ್ರಾಷನ ಪ್ರಾತ್ಯಕ್ತಿಕ

ಬ್ಯಾಡಗಿ: ತರಬೇತಿ ಶಿಬಿರದಲ್ಲಿ ಸೈನಿಕ ಹುಳುಗಳ ನಿಯಂತ್ರಣಕ್ಕಾಗಿ ವಿಷಪ್ರಾಷನ ತಯಾರಿಕಾ ವಿಧಾನದ ಪ್ರಾತ್ಯಕ್ಷಿಕೆ ಜರುಗಿತು.

ಬ್ಯಾಡಗೀ ತಂತ್ರಜ್ಞಾನದಲ್ಲಿ ಹಿಂದೆ ಬಿದ್ದರೆ ಕೃಷಿಯಲ್ಲಿ ಲಾಭ ಮಾಡಲು ಸಾಧ್ಯವಿಲ್ಲ ಈ ನಿಟ್ಟಿನಲ್ಲಿ ಸೈನಿಕ ಹುಳುಗಳ ನಿಯಂತ್ರಣಕ್ಕೆ ಸಾಮಾಹಿಕ ವಿಷಪ್ತಾಷನವೊಂದೆ ಸುಲಭ ಮಾರ್ಗೋಪಾಯ ಎಂದು ಜಂಟಿ ಕೃಷಿ ನಿರ್ದೇಶಕ ಸದಾಶಿವ ಅಭಿಪ್ರಾಯ

ಭವನದಲ್ಲಿ ಎರ್ಪಡಿಸಿದ್ದ ತರಬೇತಿ ಶಿಬರದನ್ನುವುದಿಸಿ ಮಾತನಾಡಿದ ಅವರು, ಗೊಂಬನಜೋಳ ಬೆಳೆಯಲ್ಲಿ ಕಾಣಿಸಿಕೊಂಡಿರುವ ಸ್ಪೇತ ಹುಳುವಿನ ಬಾಧೆ ಬಹಳಷ್ಟು ಅಂತಕಕಾರಿಯಾಗಿದ್ದು, ಈ ಹಂತದಲ್ಲಿ ಕೆಲ ಸಾಮೂಹಿಕ ಮಾರ್ಗೋಪಾಯಗಳನ್ನು ರೈತ ಸಮುದಾಯ ಕಂಡುಕೊಳ್ಳಬೇಕಾದ ಅನಿವಾರ್ಧತೆಯದೆ ಎಂದರು.

ಯಾವುದೇ ಸಮಸ್ಯೆ ಎದುರಾದರೂ ಸೂಕ್ತ ಪರಿಹಾರ ಕಂಡುಕೊಳ್ಳುವ ನಿಟ್ಟಿನಲ್ಲಿ ಕೃಷಿಕರು ಮುಂದಾಗಬೇಕು. ಪ್ರಾಥಮಿಕ ಹಂತದಲ್ಲೇ ರೋಗ ಪತ್ತೆಯಾಗಿರುವು ಸುಲಭವಾಗಿ ನಿಯಂತ್ರಿಸಬಹುದಾಗಿದೆ ಎಂದರು.


ಹನುಮನಮಟ್ಟ ಕೃಷಿ ವಿಜ್ಞಾನ ಕೇಂದ್ರದ ವಿಜ್ಞಾನಿ ಗುಂಡಣ್ಣನವರ ಸೈನಿಕ ಹುಳುವಿನ ಬಾಧೆ ನಿಯಂತ್ರಣಕ್ಕೆ ಬಳಸುವ ಸಾಧನಗಳೊಂದಿಗೆ ಆಗಮಿಸಿದ್ದ ಅವರು, ವಿಷಪ್ರಾಷನ ತಯಾರಿಕಾ ವಿಧಾನ, ಕೀಟಗಳನ್ನು ನಾಶಪಡಿಸುವ ಪ್ರಾತ್ಯಕ್ಷಕೆ ವೇದಿಕೆಯಲ್ಲಿ ನಡೆಸಿಕೊಟ್ಟರು. ಬಳಿಕ ಮಾತನಾಡಿದ ಅವರು, ಅವರ ಹೊಲಕ್ಕೆ ಬಂದಿರುವ ಕೀಟ ಬಾಧ ನಮ್ಮ ಹೊಲದಲ್ಲಿ ಇಲ್ಲ ಎಂಬ ಉದಾಸೀನತೆ ತೋರಬೇಡಿ, ಯಾವುದೇ ಕಾರಣಕ್ಕೂ ರುವಾಗಿ ಸಾಮೂಹಿಕ ವಿಷಪ್ರಾಶಣ ಮಾಡುವಂತೆ ಕರೆ ನೀಡಿದರು.

ರೈತ ಸಂಘದ ಮುಖಂಡ ಮಲ್ಲಿಕಾರ್ಜುನ ಬಳ್ಳಾರಿ, ಸೈನಿಕ ಹುಳುವಿನ ಬಾಧಗ ರೈತ ಸಮುದಾಯ ನಲುಗಿದೆ, ಮೊದಲೇ ಸಾಲದ ಶೂಲದಲ್ಲಿ ಸಿಲುಕಿರುವ ಅವರಿಗೆ ಪ್ರಸಕ್ತ ವರ್ಷ ಉತ್ತಮ ಬೆಳೆ ಬರುವಂತಹ ನಿರೀಕ್ಷೆ ಇಟ್ಟುಕೊಂಡಿದ್ದಾರೆ, ಕೂಡಲೇ ಕೃಷಿ ಇಲಾಖೆ ಸ್ಪೆನಿಕ ಹುಳುವಿನ ಪತ್ತೆ ಹಚ್ಚುವುದು ಸೇರಿದಂತೆ ಅವುಗಳ ನಿಯಂತ್ರಣ ತೆಗೆದುಕೊಳ್ಳಬೇಕಾದ ಕ್ರಮಗಳ ಮಾಹಿತಿ ನೀಡಲು ಮತ್ತು ಮೇಲುಸ್ತುವಾರಿ ನಡೆಸಲು ಪ್ರತ್ಯೇಕವಾಗಿ ಅಧಿಕಾರಿಗಳನ್ನು ನೇಮಕ ಮಾಡಬೇಕು. ಇಲ್ಲದೇ ಹೋದಲ್ಲಿ ಪ್ರಮುಖ ವಾಣಿಜ್ಯ ಬೆಳೆಯೊಂದು ನಮ್ಮ ಕಣ್ಣೆದುರಿಗೆ ನಾಶವಾವುದು ನಿಶ್ಚಿತ ಎಂದರು.

ಈ ಸಂದರ್ಭದಲ್ಲಿ ಆಶೋಕ, ಕೃಷ್ಣಾ ನಾಯಕ್ ಮಂಜುನಾಥ ಅಂತರವಳ್ಳ ತಹಶೀಲ್ದಾರ್ ಶಿವಶಂಕರ್ ನಾಯಕ್, ರೈತ ಮುಖಂಡರಾದ ಗುಡ್ಡಪ್ಪ ನಂಜುಂಡಸ್ವಾಮಿ

Based on DFI objective

- To identify technologies for **Enhancement of productivity** for major Agricultural and Horticultural crops and allied sectors of the district
- To identify different technologies for **Reducing the cost of cultivation** of major crops and allied enterprises.
- To assess the cropping pattern in order to decide on essence of **Crop diversification** to enhance the farm income.
- To create awareness for Value chain development and market linkage for increase in the livelihood security in the rural areas.

CLUSTER A: Hanumapur

Major Crops / Enterprises	Prioritized Problems in these crops/enterprises	Extent of area(ha/no) affected by the problem	Proposed Intervention
Foxtail millets	Low yield Lack of awareness on new varieties	600 ha	FLD: Demonstration of foxtail millet variety DHft-109-3 for higher yield and income Trainings, FV and Field Day
Little millets	Lack of awareness on new varieties Low yield	250 ha	FLD:Demonstration of foxtail millet variety DHLm-36-6 for higher yield and income
Rabi Sorghum	Low yield due to use of local variety Lodging and poor fodder quality	800 ha	FLD: Demonstration of Rabi sorghum variety SPV-2217

Major Crops / Enterprises	Prioritized Problems in these crops/enterprises	Extent of area(ha/no) affected by the problem	Proposed Intervention
Betalvine	Low yield (10-15 lakhs leaves/ha) Incidence of Wilt (15-20%)	30 ha	FLD: ICM in Betel vine
Onion	Micronutrient deficiency Poor quality of fruits Low yield	500 ha	FLD: Micronutrient Management in Onion using vegetable special
Sheep	High cost of feeding balanced growth ration to Lambs Poor growth	1500 No	OFT: Assessment of Detoxified karanja cake as protein source on growth of lambs

CLUSTER B: Chikkeri – Hosalli

Major Crops / Enterprises	Prioritized Problems in these crops/enterprises	Extent of area(ha/no) affected by the problem	Proposed Intervention
Sugarcane	Poor nutrient management Improper pest and disease management	850 ha	FLD: ICM in Sugarcane
Chilli	Lack of knowledge about improved cultural practices Poor soil fertility Lack of knowledge on improved varieties Incidence of pest and diseases	150 ha	OFT: Assessment of chilli hybrids for yield potential, disease & pest resistance
Tomato	Micronutrient deficiency Poor quality of fruits Low yield	90 ha	FLD: Micronutrient Management in Tomato using vegetable special

Major Crops / Enterprises	Prioritized Problems in these crops/enterprises	Extent of area(ha/no) affected by the problem	Proposed Intervention
Mango	Incidence of leaf hopper and powdery mildew Low yield	200 ha	OFT: Management of Leaf hopper and powdery mildew in Mango
Fish	Lack of fish cultivation in farm ponds	-	FLD : Composite fish cultivation
Fodder cafeteria	Low productivity of milk due to scarcity of green fodder	20 ha	FLD: Demonstration on Fodder Cafeteria

CLUSTER C: Baradur

Major Crops / Enterprises	Prioritized Problems in these crops/enterprises	Extent of area(ha/no) affected by the problem	Proposed Intervention
Dairy	Low milk yield Low milk fat Low Solids Not Fat(SNF)	<u>-</u>	FLD: Energy and non- protein nitrogen source supplementation throught UMMB as lic. Trainings, FV and Field Day
Groundnut	Non availability short duration varieties in kharif Susceptibility to pest and disease	800 ha	OFT: Assessment of groundnut varieties for short duration and higher productivity. Trainings, FV and Field Day
Soybean	Use of local variety No seed treatment Poor nutrient management Lack of knowledge pest and disease management	800 ha	FLD: ICM in Soybean. Trainings. FV and Field Day

Major Crops / Enterprises	Prioritized Problems in these crops/enterprises	Extent of area(ha/no) affected by the problem	Proposed Intervention
Greengram	Low yield due to local varieties Non availability of high yielding varieties Susceptibility to Yellow Mosaic	100 ha	OFT: Assessment of Greengram Varieties KKM-3 for higher yield.
	Imbalanced application of fertilizers		Trainings, FV and Field Day

CLUSTER D : Yadagodi

Major Crops / Enterprises	Prioritized Problems in these crops/enterprises	Extent of area(ha/no) affected by the problem	Proposed Intervention
Banana	Incidence of disease Low yield Poor quality	180 ha	OFT: Effective control of ponama wilt by using stem injection method to enhance yield in Banana. Trainings, FV and Field Day
Maize	Low in grain filling Micronutrient deficiency symptoms	500 ha	FLD: Demonstration of MAIZE MAXIM in Maize
Banana	Micronutrient deficiency Imbalanced fertilizer application Low yield	180 ha	FLD: Micronutrient Management in Banana using Banana special. Trainings, FV and Field Day

CLUSTER E : Choudadanapur

Major Crops / Enterprises	Prioritized Problems in these crops/enterprises	Extent of area(ha/no) affected by the problem	Proposed Intervention
Maize	Low Yield (18-20 q/ac) Micro nutrient deficiency Pest incidence	1000 ha	FLD: Integrated crop management in Maize
Sugarcane	High cost on fertilizers Low organic matter due to burning of trash/residues (50-70%) Current yield: 75-100 t/ha and Potential yield: 200-250 t/ha Reasons for yield gap:	150 ha	OFT: Assessment of compost culture for the management of Sugarcane trash

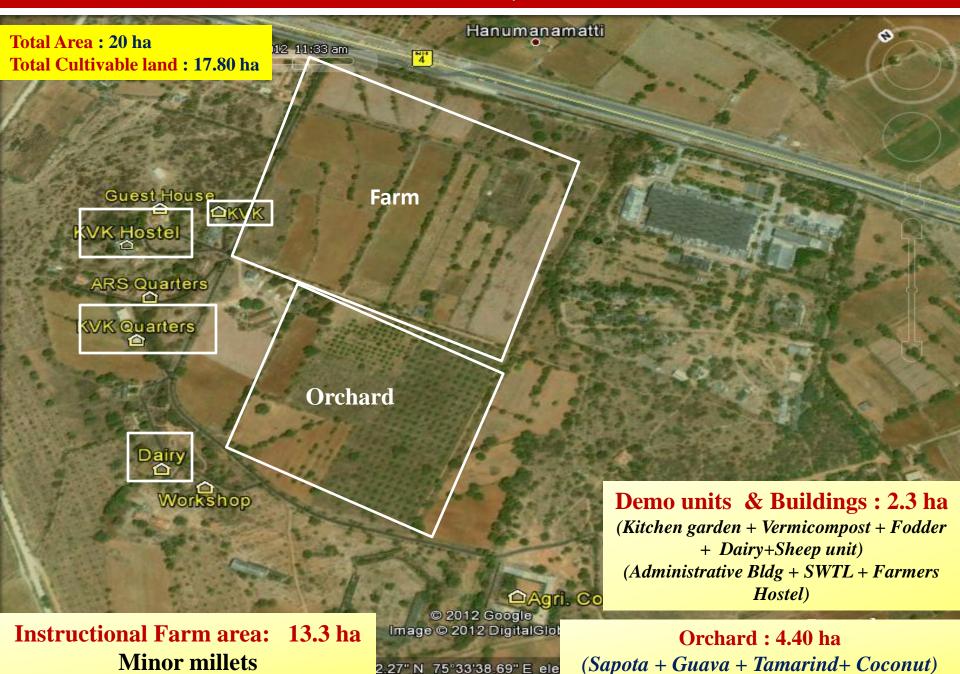
Abstract of OFT & FLDs

Name	Designation	No. of OFT	No. of FLD
Dr. Ashoka P	Sr. Scientist & Head	01	01
Dr. K. P. Gundannavar	Scientist (Ag. Ento.)	01	03
Mr. Harish D. K	Scientist (Horticulture)	02	03
Dr. Venkanna Balaganur	Scientist (Animal Science)	01	03
Dr. Shivamurthy D	Scientist (Agronomy)	02	02
Dr. Kumara B H	Scientist (Soil Science)	02	04
	Total	09	16

FLD/OFT/Cluster FLD	No. of demo.	Amount (Rs.)
OFT	09	90,150/-
FLD	16	2,76,470/-
Total	26	3,66,620/-

ABSTRACT OF OFTS PROPOSED DURING 2019-20

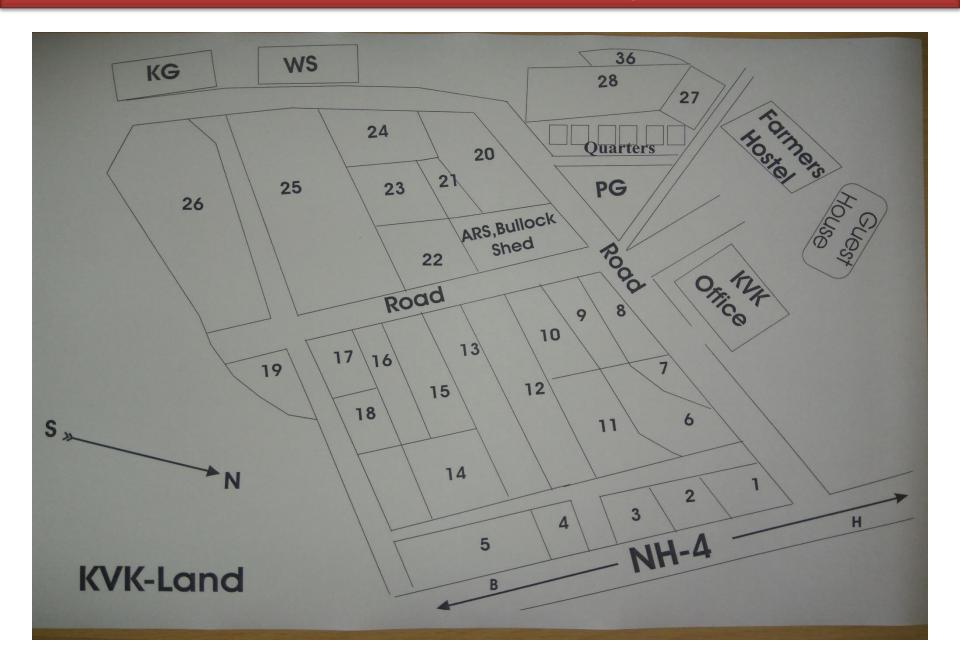
SI. No.	Crop/ enterprise	Title of intervention	Continued / New	Total cost involved (Rs.)
1	Paddy	Demonstration of Silicon application in rice	Continued	3,000/-
2.	Ground nut	Assessment of groundnut varieties for short duration and higher productivity	Continued	13,500/-
3	chilli	Assessment of chilli hybrids for yield potential, disease & pest resistance	Continued	11,100/-
4	Sugarcane	Demonstration of micronutrient application in early crop growth stages of Sugarcane	Continued	1,650/-
5	Mango	Management of Leaf hopper and powdery mildew in Mango	Continued	12,000/-
6	Banana	Effective control of ponama wilt by using stem injection method to enhance yield in Banana	Continued	27,900/-
7	Green gram	Demonstration of Greengram variety KKM-3 for higher yield	New	3,000/-
8	Sugarcane	1.Assessment of compost culture for the management of Sugarcane trash	New	3,000/-
9	Sheep	Assessment of Detoxified karanja cake as protein source on growth of lambs	Continued	15,000/-
			Total	90,150/-

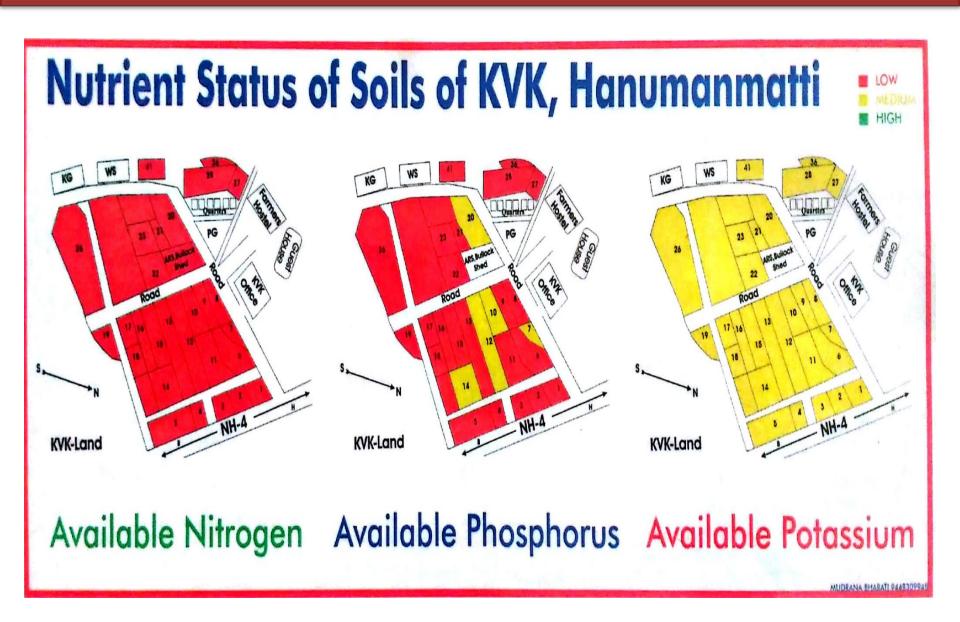

ABSTRACT OF FRONT LINE DEMONSTRATIONS - 2019-20

Sl.No.	Category/ Crop or enterprise	Title of Technology	Continued / New	Total cost involved (Rs.)
01	Maize	Integrated crop management in Maize	Continued	42,250/-
02	<i>Rabi</i> Sorghum	Demonstration of <i>Rabi</i> sorghum variety SPV-2217	Continued	12,220/-
03	Foxtail millet	Demonstration of foxtail millet variety DHFt-109-3 for higher yield and income	Continued	3,050/-
04	Little millet	Demonstration of foxtail millet variety DHLm-36-6 for higher yield and income	Continued	3,050/-
05	Soybean	ICM in Soybean	Continued	26,600/-
06	Groundnut	Demonstration of GROUNDNUT RICH in groundnut	New	11,800/-
07	Maize	Demonstration of MAIZE MAXIM in Maize	New	21,800/-
08	Sugarcane	ICM in Sugarcane	New	45,000/-
09	Bt-Cotton	Demonstration of COTTON PLUS in cotton	New	13,800/-

Sl.No.	Category/ Crop or enterprise	Title of Technology	Continued / New	Total cost involved (Rs.)
10	Betelvine	ICM in Betelvine	Continued	22,000/-
11	Tomato	Micronutrient Management in Tomato using vegetable special	Continued	9,800/-
12	Onion	Micronutrient Management in Onion using vegetable special	New	9,800/-
13	Banana	Integrated Management in Banana	Continued	11,300/-
14	Fodder	Demonstration on Fodder Cafeteria	Continued	15,000/-
15	Dairy	Energy and non-protein nitrogen source supplementation throught UMMB as lic	Continued	14,000/-
16	Fish	Composite fish cultivation	New	15,000/-
		•	Total	2,76,470/-

Activity calendar for KVK Farm


Arial view KVK, Haveri


Monthly Rainfall (mm) recorded at Krishi Vigyan Kendra, Hanumanamatti for 2015,2016,2017,2018 and 2019 compared with average of 21 years

Month	Mean of 21 Years (1990-2011)	2015	2016	2017	2018	2019
January	1.15	0.0	0.0	0.0	0.0	0.0
February	1.50	0.0	0.0	0.0	0.0	0.0
March	4.33	0.2	0.0	0.0	40.0	
April	26.11	5.4	1.8	41.6	72.8	
May	34.21	92.4	50.4	85.4	93.6	
June	35.84	146.8	76.5	9.0	78.9	
July	46.10	57.0	39.8	79.6	80.4	
August	38.13	54.1	22.4	21.0	97.5	
September	35.28	73.7	43.8	115.4	84.6	
October	55.60	144.6	2.2	214.6	93.4	
November	28.80	0.0	4.6	0.0	15.2	
December	1.90	0.0	0.0	0.0	0.0	
Total	308.95	574.2	241.5	566.6	656.4	

KVK Land utilization Map

Nutrients status of Soil of KVK, Hanumanamatti

Technological products

Rabi

Sorghum

(SPV-2217)

Perennial

Sorghum

Fodder

25

05

Farm manager & Senior

Farm manager & Senior

Farm manager & Senior

Farm manager & Senior

Contd...

Scientist & Head

Scientist & Head

Scientist & Head

Scientist & Head

Seed Production units in the Farm	Crop/ activity in Kharif	Quantity (Q) Number planned to be produced during 2019-20 (q)	Crop/ activity in Rabi/ Summer	Quantity (Q) Number planned to be produced during 2019-20 (q)	Names of the team members involved		
	Finger millet (DHFM-78-3)	15			Farm manager & Senior Scientist & Head		

20

10

15

25

0.5

0.5

Redgram (BSMR-

736)

Fodder Maize (AT)

Castor (GC-3)

Sun hemp (Local)

CoFS-31

Fodder cowpea

Seed

Production

Seed Production units in the Farm	Crop/ activity in Kharif	Quantity (Q) Number planned to be produced during 2019- 20 (q)	Crop/ activity in Rabi/ Summer	Quantity (Q) Number planned to be produced during 2019- 20 (q)	Names of the team members involved
	Foxtail millet (Dhft-109- 3)	25	Horse gram	30	Farm manager & Senior Scientist & Head
	Little millet (Dhlm-36-3)	15	(GPM-6)		Farm manager & Senior Scientist & Head
Seed Production	Proso millet (DHPM- 2769)	15			Farm manager & Senior Scientist & Head
	Barnyard millet (DHBM- 93-2)	25			Farm manager & Senior Scientist & Head
	Finger millet (DHFM-78-3)	15			Farm manager & Senior Scientist & Head
	Sesam	05			Farm manager & Senior Scientist & Head
	Madki	05			Farm manager & Senior Scientist & Head

Demo/ production Units/labs	Crop/ Enterprise (ha)	Quantity (Q) Number planned to be produced during 2019-20 (q)	Members of KVK Team involved
Nursery. Unit	Curry leaf (Suvasini	5000	Farm manager, Horticulture & Senior Scientist & Head
	Guava (L-49)	2000	Farm manager, Horticulture & Senior Scientist & Head
	Sapota (DHS-1 & 2)	6000	Farm manager, Horticulture & Senior Scientist & Head
Seedlings	Lime (Local)	1500	Farm manager, Horticulture & Senior Scientist & Head
	Tamarind (DTS-1)	2000	Farm manager, Horticulture & Senior Scientist & Head
	Mango (alphonso)	2000	Farm manager, Horticulture & Senior Scientist & Head
Bio-products	Trichoderma	2.0 qtl	Entomologist , Farm manager & Senior Scientist & Head
	Vermicompost production unit	01	Farm manager, Animal Scientist & Senior Scientist & Head
	Azolla unit	01	Animal Scientist, Farm manager & Senior Scientist & Head
Demo. Unit	Poultry rearing unit	01	Animal Scientist, Farm manager & Senior Scientist & Head
	Apiculture	01	Entomologist , Farm manager & Senior Scientist & Head
	Goat rearing unit	20 No's	Animal Scientist, Farm manager & Senior Scientist & Head

Activities proposed as knowledge and resource centre during 2019-20

Category	Details of technologies	Area (ha)/ Number/kg	Names of the team members involved
	Millet crop cafeteria	1.0	 Farm manager & Senior Scientist & Head
	Fodder cafeteria	1.0	 Farm manager & Senior Scientist & Head
	Sapota garden	2.0	 Horticulture, Farm Manager, Sr. Scientist
Technology	Multiple cropping system (Sapota+Millets+Fodder crops)	2.0	 Farm manager & Senior Scientist & Head
park/ crop cafeteria	Drumstick unit	0.5	 Farm manager & Senior Scientist & Head
	Horticulture Nursery Unit	0.20	 Horticulturist, Farm manager & Senior Scientist & Head
	Cashew nut	0.5	 Horticulturist, Farm manager & Senior Scientist & Head
	Horticulture mother orchard	1.0	 Horticulturist, Farm manager & Senior Scientist & Head
	Custard apple	0.5	 Horticulturist, Farm manager & Senior Scientist & Head

Plan of activities under revolving fund 2019-20

Proposed activities	Expected output	Anticipated income (Rs.)	Names of the team members involved
Seeds production	100 (qt)	2,80,000/-	Farm Manager & Senior Scientist & Head
Production of planting materials (Nos.)	4000 (No)	2,00,000/-	Horticulture, Farm manager & Senior Scientist & Head
Production of Vermicompost (q)	25(qt)	15000/-	Farm Manager & Senior Scientist & Head
Trichoderma	1.0 (qtl)	1,30,000/-	Entomologist, Farm manager & Senior Scientist & Head
Soil and Water	3000	3,00,000/-	Soil Scientist, Prog. Asst & Senior Scientist & Head
Pseudomonas	50 (kg)	75,000/-	Entomologist , Farm manager & Senior Scientist & Head
Dairy (Milk production)	20000 (Liter)	6,00,000/-	Animal Science, Farm manager & Senior Scientist & Head
	Total	16,00,000/-	

Status of Revolving Fund 2018-19

Opening balance as on 01.04.2018 (Rs.in Lakh)	Expenditure incurred during 2018-19 (Rs.in Lakh) Upto 31.03.2019	Receipts during 2018-19 (Rs.in Lakh)	Closing balance as on 31.03.2019 (Rs.in Lakh) (Including value of material in stock)
3.61	12.27	11.74	5.28

KVK, Farm Seed Production Activities

Redgram Var: BSMR-736

Fodder sorghum COFS - 29

Horse gram Var: GPM-6

Hybrid Napier Var: DHN-6

Sapota Var: Kalipati + Sunhemp Var : Local

Castor Var : GC-3

Sapota mother plant orchard

Sun hemp : Local

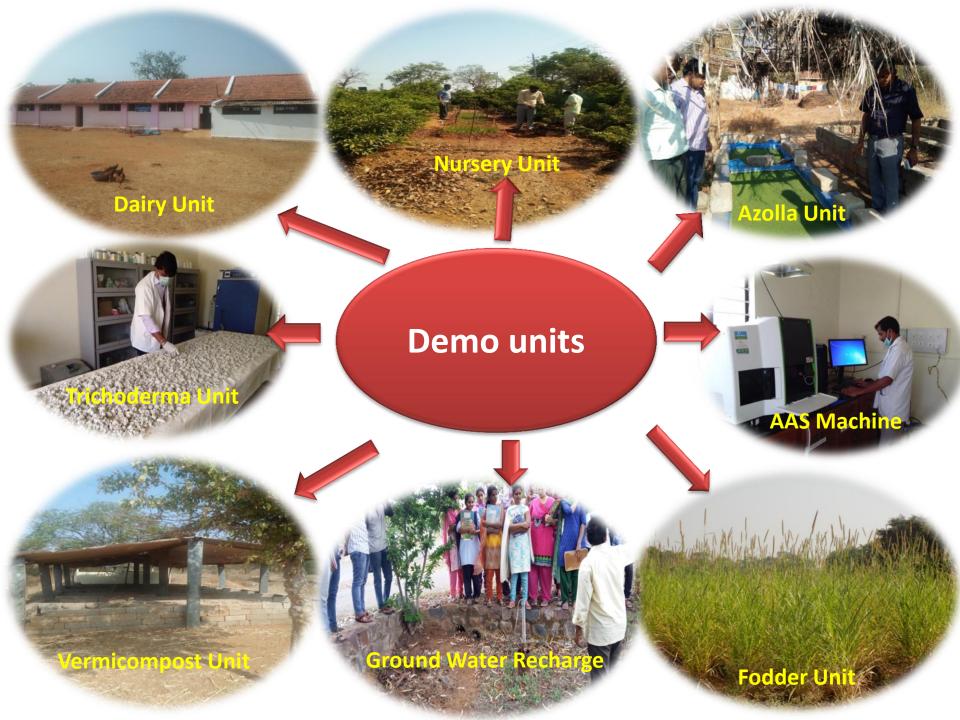
Threshing yard

Transplanted Redgram: BSMR-736

Sapota DHS-1 & DHS-2 Grafting

Guava L-49 Air Layering

Trichoderma preparation


Soil sample preparation

Soil testing and Trichoderma production Lab

Hon'ble MLA, Byadagi, visited to soil lab

Activity calendar of Prog. Asst(Lab) for the year 2019-20

Name of Laboratory	Target for no. of samples for testing/ analysis*	Members associated
Soil & Water Testing Lab	5000	•, Prog. Asst ,Soil Scientist Senior Scientist & Head

Facilities available for soil analysis at KVK, H.matti:

- •Equipments for Conventional method : Soil pH, EC, Av.N,P,K,S, Av.Zn,Fe,Cu,Mn (micro nutrients)
- AAS Machine for micro nutrients analysis
- •Soil health Cards as per Central Govt. format analysis carried out in collaboration with JDA. (12 nutrients)
- Training programmes are organized for students and farmers.

Trainings for farmers/farm woman during 2019-20

Thematic area	Major problem	Training course title	No. of courses	Expected no. of participants	Members associated
Soil health & fertility	Lack of awareness about soil testing and application of fertilizers	Soil health manageme nt practices	02	300	 Soil Sceintist Prog. Asst. (Lab) Senior scientist & head

Vacational Trainings during 2019-20

Thematic area	Training course title	No. of courses	Types of clients	Expected no. of participants	Members associated
Soil health & fertility	Soil health management practices	02(2 days)	Rural youth and students	100	•Soil Sceintist •Prog. Asst. (Lab) • Senior scientist & head

Utilization of KVK funds during the year 2018-19 (as on 31.03.19)

Sl.No.	Particulars Particulars	Sanctioned	Released	Expenditure
21.1	(A). REVENUE (Recurring Contingencies)	0	0	0
21.1.1	Pay & Allowances	92.08	92.08	60.66
21.1.2	Traveling allowances	1.50	1.50	1.05
21.1.3	Contingencies	0	0	0
21.1.3.a	Stationery, telephone, postage and other expenditure on office running, publication of Newsletter	2.30	2.30	2.01
21.1.3.b	POL, repair of vehicles, tractor and equipments	2.20	2.20	2.01
21.1.3.c	Food/refreshment for farmers/extension personnel @ Rs.150/person/day	0.75	0.75	0.67
21.1.3.d	Training material (need based materials and equipments for conducting the training)	1.00	1.00	0.91
21.1.3.e	Frontline demonstrations	2.75	2.75	2.58
21.1.3.f	On farm testing (OFTs)/Technology Assessment	0.45	0.45	0.35
21.1.3.g	Integrated Farming System (IFS) (Min. 5 Units)	0	0	0
21.1.3.h	Training of extension functionaries	0.15	0.15	0.06
21.1.3.i	Extension activities/services	0.50	0.50	0.49
21.1.3.j	Farmers' Field School	0	0	0
21.1.3.k	EDP (2 Nos.) / Innovative activities	0.30	0.30	0.29
21.1.3.l	Soil & water testing & issue of soil health cards		0.10	0.04
21.1.3.m	Maintenance of building	0.50	0.50	0.50
21.1.3.n	Farmers Conclave, KVK Conference	0	0	0
21.1.3. o	Video production	0	0	0
21.1.3.p	Library (Purchase of Journals, Periodicals, News Papers& Magazines)	0	0	0
	Total Recurring	0	0	0
21.2	(B). CAPITAL (Non-Recurring Contingencies)	0	0	0
21.2.1	Equipments& Furniture	0	0	0
21.2.2	Works	0	0	0
21.2.3	Vehicle	0	0	0
21.2.3 a	Four wheeler (replacement)	0	0	0
21.2.4	Library	0	0	0
	TotalNon Recurring	0	0	0
21.3	(C). REVOLVING FUND	0	0	0
	GRAND TOTAL (A+B+C)	104.58	104.58	71.62

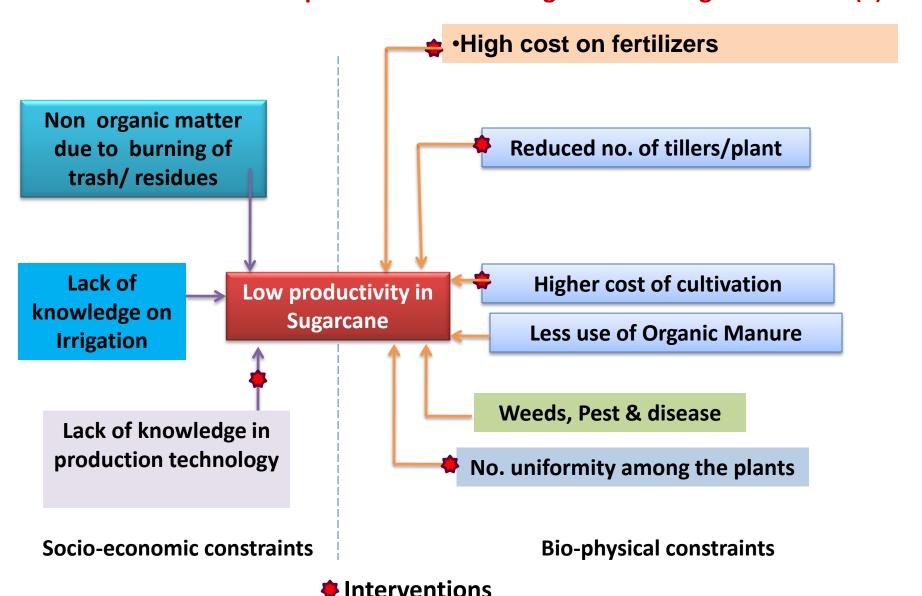
Details of Budget Estimate based on proposed action plan(2019-20)

Sl. No	Particulars	BE 2019-20 proposed (Rs.) in lakhs
22.1	(A). REVENUE (Recurring Contingencies)	
21.1.1	Pay & Allowances	90.00
22.1.2	Traveling allowances	2.00
22.1.3	Contingencies	
22.1.3.a	Stationery, telephone, postage and other expenditure on office running, publication of Newsletter	2.75
22.1.3.b	POL, repair of vehicles, tractor and equipments	3.00
22.1.3.c	Food/refreshment for farmers / extension personnel @ Rs.150/person/day	1.00
22.1.3.d	Training material (need based materials and equipments for conducting the training)	0.75
22.1.3.e	Frontline demonstrations	3.50
22.1.3.f	On farm testing (OFTs)/Technology Assessment	0.75
22.1.3.g	Integrated Farming System (IFS) (Min. 5 Units)	0.30
22.1.3.h	Training of extension functionaries	0.75
22.1.3.i	Extension activities/services	1.00
22.1.3.j	Farmers' Field School	0.30
22.1.3.k	EDP (2 Nos.) / innovative activities	0.40
22.1.3.l	Soil & water testing & issue of soil health cards	1.00
22.1.3.m	Maintenance of building	1.00
22.1.3.n	Library (Purchase of Journals, Periodicals, News Papers& Magazines)	0.40
22.1.3.o	Others, pl. specify	
	Total Recurring (A)	
22.2	(B). CAPITAL (Non-Recurring Contingencies)	
22.2.1	Furniture & Fixtures	5.00
22.2.2	Works	
22.2.3	Vehicle	
22.2.3.a	Four wheeler (replacement)	
22.2.4	Library	1.00
	Total Non Recurring (B)	
	Grand Total (A + B)	114.90

Extension activities

Extension activities during 2019-20

Sl. No.	Extension activity	No. of activities	Targeted number of participants	Names of the team members involved
1	Advisory services	600	600	KVK Team
2	Diagnostic visits	25	100	KVK Team
3	Field days	14	750	KVK Team
4	Group discussions	12	120	KVK Team
5	Kisan gosthies	02	200	KVK Team
6	Film shows	01	200	KVK Team
7	Self -Help Groups (SHGs) meetings	8	120	KVK Team
8	Kisan Melas	05	1,00,000	KVK Team
9	Exhibitions	06	50000	KVK Team
10	Scientists' visit to farmers fields	100	600	KVK Team
11	Plant/soil health/animal health camps	01	50	KVK Team
12	Farm science club meetings	01	50	KVK Team
13	Ex-trainees sammelans (Meetings)	01	30	KVK Team
14	Farmers' seminars/workshops	02	100	KVK Team
15	Method demonstrations	15	250	KVK Team
16	Celebration of important days	08	550	KVK Team
17	Special day celebrations	06	600	KVK Team
18	Exposure visits	01	30	KVK Team
19	Technology week celebration	01	150	KVK Team
20	Farmers Field School (FFS)	01	30	KVK Team
21	Farm innovators meet	01	20	KVK Team
22	Awareness programmes	03	300	KVK Team
23	Pre-kharif campaign	02	100	KVK Team
24	Pre-rabi/summer campaign	02	100	KVK Team


Technical Programmes for 2019-20

Sr. Scientist and Head

SI. No	Crop/ enterprise	Title of intervention	Continued / New	Total cost involved (Rs.)		
1	Sugarcane	Assessment of compost culture for the management of Sugarcane trash	New	3,000/-		
2.	Foxtail millet	Assessment of Foxtail millet varieties for higher yield under rainfed situation	New	996/-		
	FLD					
1	<i>Rabi</i> Sorghum	Demonstration of <i>Rabi</i> sorghum variety SPV-2217	Continued	12,220/-		

PROBLEM-CAUSE TREE FOR LOW PRODUCTIVITY IN SUGARCANE CROP

1. Assessment of compost culture for management of sugarcane trash (R)

ಪ್ರಜಾೄವಾಣಿ

ಹಾವೇರಿ ಜಿಲ್ಲೆಯಲ್ಲಿ 7 ಸಾವಿರ ಹೆಕ್ಟೇರ್ ಕಬ್ಬಿನ ಹೊಲ:, 10 ಲಕ್ಷ ಟನ್ ನಷ್ಟು ಉತ್ಪಾದನೆ

ಕಬ್ಬಿನ ರವದಿಗೆ ಬೆಂಕಿ: ಇಳುವರಿ ನಷ್ಟ

ತಾವೇರಿ: ಕಬ್ಬ ಕಟಾವಿನ ಬಳಿಕ ರವದಿಗೆ ಬೆಂಕಿ ಹಾಕಿ ಸುಡುವ ಇದರಿಂದ ಪರಿಸರ ಹಾನಿ ಮಾತ್ರವಲ್ಲ ಐಸಿತಗೊಳ್ಳುತ್ತದೆ ಎಂಬುದನ್ನು ಕೃಷಿ

ನೆಜ್ಜ್ ಪಟ್ಟಾಗುತ್ತದೆ. ಆಕೆಗಳ ಸಂಖ್ಯೆ ರವದಿಯನ್ನು ಜೊಲದಲ್ಲಿ ಹಾಗೆ ಸಂಪನ್ನೂಲವಾಗಿದ್ದು ಅದನ್ನ ಸುಟ್ಟು ಎನ್ನುತ್ತಾರೆ ಅವರು. ಇತ್ತಿಗೆ, ಕಲೆ ನಿರ್ವಹಣಾ ನೆಜ್ಜ್ ಬಿರುವ ಕಾರಣ, ಮತ್ತೆನ ತಾಪಮಾನ ಹಾಟು ಮಾಡದೇ, ಜಮೀನಿಕ ಮೇಲೆ ಕಮ್ಮಿಸ ರವದಿನ

ಹೆಚ್ಚಾಗುತ್ತದೆ. ರೈತರಿಗೆ ನೀರುವರಿಯ ಲಾಭಗಳೇ ಕಾ 🤋 ಕ ಬೈಸ ಕಬ್ಬಿಸ ರವದಿಯು ಸಾವಯವ ಸಮಾನಯೋಗ ಪಡೆದುಕೊಳ್ಳಬಹುದು

ಉತ್ಪಾದನೆ ಕರ್ನಿಷ ಕಟಾವಿಷ ಬಳಿಕ ರವದಿಯನ್ನು ಸುಡುವ

Dist. area (ha) 14826		Producti	Production (t) 372062		62	Productivity (t/ha) 69.0				
1. Assessment of compost culture for management of sugarcane trash (R)										
Cluster Village-Choudadanapur Crop/ enterprise Problems		ns	Availability of Technologies and the Sources		jies and	OFT-1 Nature /mode of intervention				
Sugarcane	•Low organic matter due to burning of trash/residues (50-70%)		trash/residue (Farmers Practice) TO 2: Retention of residue & appln. of compost culture @ 6		9	 On Farm Testing Training –On/ Off campus 				
•High cost on fertilizer •Reduced no. of tillers •Lack of knowledge in production technology		llers/plant ge in			pln. of ure @ 6	 ➤ Method demonstration (in situ vermiculturing) ➤ Result demonstration (% conversion of trash to compost, Yield & 				
Area (ha)	No. of demos	5.	residu Bio ch		TO 3: Retention of residue + appln. of Bio char@ 8kg/Ac		pln. of	Implementing Scientist: Sr. Scientist & Head, Agril		
1.2 `3			Source	: TNAU		Ent & Soil Science				
Critical input	Critical input Qty / Demo (0.4 ha) Cost /Dem (Rs)		10	No. of Demo	Total cost (Rs.)	Parameters (At harvest) ✓ Initial and after harvest of nutrient status in soil ✓ Plant height (cm) at harvest				
Compost culture	6 kg	360		3	3000/-	no. of tillers/plantRoot length (cm)Yield (t/ha)				
Bio char	8 g	640				Economics				
Cost	1000									

Village Productivity

620 kg/ha

Cluster Village-Hanumapur

Season: Kharif

Assessment of Foxtail millet varieties for higher yield under rainfed situation

Technology options			Source of Technology			
TO ₁ Farmer practices			-			
TO ₂	TO ₂ DHFt-109-3			UAS, Dharwad		
TO ₃	H N-46			UAS, R	aichur	
Critical Oty / Demo		Cost /	No of	Total		

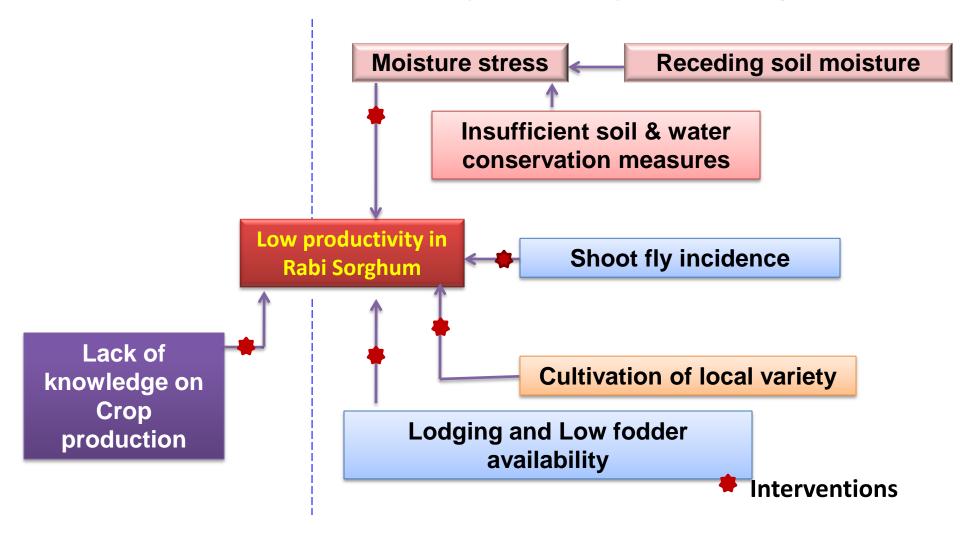
3				
Critical	Qty / Demo	Cost /	No. of	Total
input	(0.4 ha)	Demo	Demo	cost (Rs.)
T 2-Seeds	3 kg/ac	/ac 150		996
Azospirillum	200 g	16		
T 3-Seeds	3 kg/ac	150		
Azospirillum	200 g	16		
				<u>L</u>

Problems

Low yield (8 q/ha), & Poor management practice

Parameters

- Grain yield (q/ha)
- Fodder yield (t/ha)
- Economics



Team members Sr. Sci. & Head Ag. Entomology

Popularization of *rabi* sorghum variety SPV-2217

Contd.

Problem-cause tree for low productivity in Rabi Sorghum

Socio-economic constraints

Bio-physical constraints

Demonstration of *Rabi* sorghum variety SPV-2217 Cont

Cluster Village-Hanumapur

Farming situation Rainfed

No. of demo. 10

Area (ha) 04

Villages Ukkunda

Taluka Ranebennur

Problems identified

- Low yield due to use of local variety
- Lodging and low fodder availability

Technology demonstrated

- SPV-2217 Variety (Lodging resistant, stay green & high fodder yield)
- Seed treatment with Trichoderma, Azospirillum
- Soil application with ZnSO₄ before sowing
- Whorl application of Carbofuran at the time of shoot weevil incidence (Farmers contribution)

Critical input	Qty / Demo (0.4 ha)	Cost /Demo (Rs)	No. of Demo	Total cost (Rs.)
Seeds	3 kg	200	10	12220
Carbofuran	3 kg	330		
Trichoderma	200 g	16		
Azospirillum	200 g	16		
ZnSO4	6 kg	660		
	Cost / Demo	1222		

Parameters (At harvest)

- Plant height (cm)
- **◆** Lodging (%)
- Shoot fly incidence (%)

Team members

Sr. Sci. & Head

Ag. Entomology

Animal Science

- Yield (q/ha)
- Economics

Result under progress-2018-19

Crop: harvesting stage

• D.O.S: Last week of September

If you ate today thank a farmer

"My grandfather used to say that once in your life you need a doctor, a lawyer, a policeman and a preacher but every day, three times a day, you need a farmer."

Brenda Schoepp

THANK YOU....

AGRONOMY

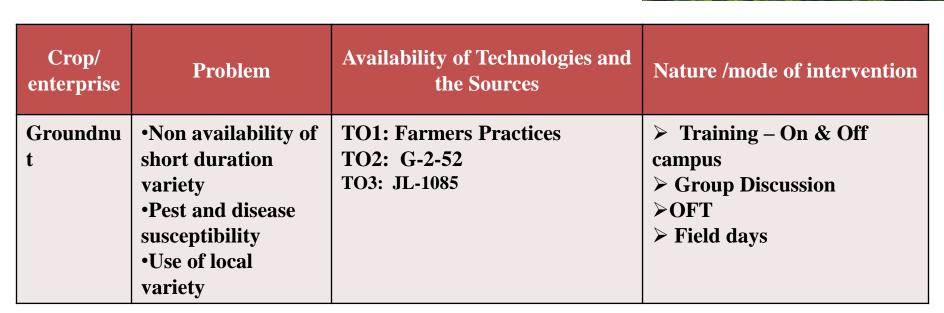
OFT-1

Dist. area (ha)

17789

Assessment of Groundnut Varieties for Short duration and Higher productivity

13398.0


New

6.11

Productivity (q/ha)

Cluster village	:	Baradur	
Major crops/enterprises of	:	Groundnut, Greengran	n,
the village		Little millet, maize, Co	otton San San San San San San San San San Sa

Production (t)

Technology options and budget required

Teo	chnology options	Source of Technology	Name of Critical inputs	Qty / trial (0.5 ac)	Cost / trial	No. of trials	Total cost (Rs.)
TO ₁	Farmers practices	-	1	-	-	03	13,500/-
TO ₂	G2-52	UAS, Dharwad	Seed	30.0 kg	2250/-		
TO ₃	JL – 1085	MPKV, Rahuri	Seed	30.0 kg	2250/-		
				Total	4500		

Parameter

- Plant height (cm)
- No. of Pods/ Plant
- Days to maturity
- •Pest incidence (%)
- Yield (q/ha)
- •Economics

Team members

Agronomy

Agriculture Entomology and

Sr. Sci. & Head

Assessment of Greengram Variety KKM-3 for higher yield

New

Dist. area (ha)	2616 na	Production (t)	633 t		Productivity (q/na)	3.62
				A		May - M
Cluster villa	ge	Baradur		A PERSONAL PROPERTY OF THE PRO		

Cluster village	:	Baradur
Major crops/enterprises of the village		Groundnut, Greengram, Maize, Bt. Cotton

Crop/ enterprise	Problem	Availability of Technologies and the Sources	Nature /mode of intervention
Greengram	 Low yield due to local varieties Non availability of high yielding varieties Susceptibility to Yellow Mosaic 	TO1: Farmers Practices TO2: KKM -3 TO3: DGGV - 2	 ➤ Training – On & Off campus ➤ Group Discussion ➤ OFT ➤ Field days

Technology options and budget required

Ted	chnology options	Source of Technology	Name of Critical inputs	Qty / trial (0.5 ac)	Cost / trial	No. of trials	Total cost (Rs.)
TO ₁	Farmers practices	-	1	-	-	03	3000.00
TO ₂	KKM – 3	UAHS, Shivamogga	Seed	5.0	500/-		
TO ₃	DGGV – 2	UAS, Dharwad	Seed	5.0	500/-		
				Total	1000/-		

Parameter

- No. of Pods/ Plant
- Days to maturity
- Pest incidence (%)
- Yield (q/ha)
- •Economics

Team members

Agronomy

Agriculture Entomology and

Sr. Sci. & Head

Demonstration of foxtail millet variety DHFt-109-3 for higher yield and income

Dist. area (ha) 1143 Production (t) 2236 t Productivity (q/ha) 4.12

Name of the Variety	DHFt-109-3
Source of	UAS, Dhawad
Technology	
Cluster Village	Hanumapura

Problems indentified

- Low yield (10-12 q/ha), Poor management practice
- Lack of awareness on new varieties
- Lack of awareness on processing & value addition

Technology intervention

- Seed treatment with Azospirillum
- **▼** DHFt-109-3 variety (Yield 15-20 q/ha)
- Processing and value addition

Budget required

Critical	Qty / Demo	Cost /	No. of	Total
input	(0.4 ha)	Demo	Demo	cost (Rs.)
Seeds	3 kg/ac	210/-	10	3350/-
Azospirillum	250 g	25/-		
Product demonstration	-	100/-		
	Total (Rs.)	335/-		

Parameters

- Grain yield (q/ha)
- Fodder yield (t/ha)
- •Pest & disease (%)
- Economics

Team members
Agronomy
Ag. Entomology
Sr. Sci. & Head

Result-2018-19

Demonstration of foxtail millet variety DHFt-109-3 for higher yield and income

Farming situation	Rainfed
No. of demo.	15
Area (ha)	6
Village	Attigeri
Taluka	Shiggaon

Technology Demonstrated	Grain Fodder yield yield (q/ha) (t/ha)		% Increase in Yield
Demo. (DHFt-109-3)	17.12	3.70	27.00/
Check (Local)	12.45	2.98	37.0%

Economics (Rs./ha.)

* Rs. 3000/q produced price

	Gross cost	Gross return *	Net return	B:C
Demo. (DHFt-109-3)	15598/-	51350	35752	3.29
Check (Local)	14550	37350	22800	2.57

Conclusion

Farmers' Feedback

The new variety performed better with good crop stand and higher yield

New variety DHFt-109-3 performed better with respect to crop stand , grain and fodder yield

Demonstration of Little millet variety DHLm-36-3 for higher yield and income

Dist. area (ha)	912	Production (t)	1531.0	Productivity (q/ha)	3.05
-----------------	-----	----------------	--------	---------------------	------

Name of the	DHLM-36-3
Variety	
Source of	UAS, Dharwad
Technology	
Cluster	Hanumapur
Village	

Problems

- •Low yield (8-10 q/ha) due poor management practice
- Lack of awareness on new varieties
- Lack of awareness on processing & value addition

Technology Intervention

- •DHLM-36-3 variety gives high yield of 15-20 q/ha with good fodder yield.
- Processing and value addition

Budget required

Critical input	Qty / Demo (0.4 ha)	Cost /Demo	No. of Demo	Total cost (Rs.)
Seeds	3 kg/ac	210	10	3350/-
Azospirillum	250 g	25		
Product demonstration	-	100		
	Total (Rs.)	335/-		

Parameters

- Grain yield (q/ha)
- Fodder yield (t/ha)
- Pest & disease (%)
- Economics

Team members

Agronomy
Ag, Ento
Soil scientist

Sr. Sci. & Head

Demonstration of little millet variety DHLM-36-3 for higher yield and income

Farming situation	Rainfed
No. of demo.	10
Area (ha)	4.0
Village	S Somapur

Technology Demonstrated	Grain yield (q/ha)	Fodder yield (t/ha)	% Increase in Yield
Demo. (DHLM-36-3)	15.85	6.81	10 70/
Check (Local)	13.35	5.21	18.7%

Economics (Rs./ha.)

* Rs. 2800/q produced price

	Gross Cost	Gross return *	Net return	В:С
Demo. (DHLM-36-3)	15648/-	44380	28732	2.84
Check (Local)	14550/-	37380	22830	2.57

Farmers' Feedback The new variety performed better with good crop stand and higher yield

Conclusion

New variety of DHLM-36-3 performed better with respect to crop stand, grain and fodder yield

Activities calendar of Scientists

Activities calendar of Scientist (Agronomy)

Village	Crop	Activity as leader	Other members of the team	Budget Proposed	Remarks			
TECHNOLOGY ASSESSMENT								
Baradur	Groundn	Assessment of	Ag. Entomolgy	13500/-	New			
	ut	Groundnut Varieties for	Soil Science					
		Short						
		duration and Higher						
		productivity						
Baradur	Green	Assessment of	Ag. Entomolgy	3000/-	New			
	gram	Greengram variety	•Soil Science					
		KKM-3 for higher yield						
		FRONTLINE DEMON	STRATION					
Hanumapur	Foxtail	Demonstration of	•Ag. Entomolgy	3350/-	Cont.			
•	millet	foxtail millet variety	•Soil Science					
		DHFt-109-3 for higher						
		yield and income						
Baradur	Little	Demonstration of	Ag. Entomolgy	3350/-	Cont.			
	millets	foxtail millet variety	•Soil Science					
		DHLm-36-6 for higher						
		yield and income						

Scientist (Agronomy)-Training programmes

Crop/ Enterprise	Activity as leader	Other members
	FARMERS/ FARM WOMEN	
Groundnut	ICM in Groundnut	
Foxtail millet	ICM in Foxtail millet	Ag Entomology
Little millet	ICM in Little millet	Soil Science
Green gram	ICM in Greengram	
	RURAL YOUTH	
Vermicomposting	Vermicomposting	Ag Entomology
		Soil Science
	EXTENSION PERSONNEL	
Crop production	ICM in different kharif and Rabi crops	Ag Entomology
		Soil Science
	VOCATIONAL TRAINING	
	Organic farming	
Millets	Cultivation of millate under arganic forming	Ag Entomology
	Cultivation of millets under organic farming	Soil Science
	Sponsored trainings	
Crop production	Crop production activity in kharif & Rabi	Ag Entomology
	crops	Soil Science

SOIL SCIENCE

Demonstration of vegetable special in tomato (Conti,..)

Area (ha): 4474 Production (t) 134225 Productivity (t/ha) 30

Cluster village Dhupadahalli (2018-19)

Hedegodu (2019-20)

Demonstration of vegetable special in tomato (Conti,..)

Crop/ enterprise	Problem	Availability of Technologies and the Sources	Nature /mode of intervention
Tomato/ Micronut rient Mixture	•High level of flowers shedding •Less in uniform size of fruits •Low marketability of fruits	TO1: Farmers Practices TO2: Application of vegetable special (5g/ltr) (Critical input: Vegetable Special) Source: IIHR, Bengaluru	 ➤ Front line demonstration ➤ Training – On & Off campus ➤ Method demonstration (Foliar Spray) ➤ Result demonstration (yield and economics) ➤ Field day

Package of Practices:

- 1. FYM-5t/acre/Vermicompost-1 t/acre
- 2. N:P:K= 100:100:100 kg/ha
- 3. Seedling treatment Vitavex poweder @ 2 g/l
- 4. Trap crop- Marigold
- 5. Barrier crop- Maize

FLD-1

Effect of Vegetable Special on growth and yield of tomato

Parameter	Farmers' practice	Vegetable Special	% Increase
1. Days to 50 % flowering	33.3	31.3	-6.0
2. Plant height (cm)	122.9	127.1	3.5
3. No. of branches/plant	4.4	5.4	22.5
4. Days to first picking of fruits	87.5	83.9	-4.1
5. Days to last picking of fruits	146.4	142.3	-2.8
6. No. of fruits/plant	26.1	30.1	15.3
7. Fruit weight (g)	35.3	42.9	19.8
8. Fruit yield (t/ha)	23.9	26.8	12.6
9. Cost of cultivation (Rs.)	54100	51000	-5.7
10. Gross Return (Rs.)	237800	267800	12.6
11. Net return (Rs.)	183700	216800	18.0
12. B:C ratio	4.4	5.3	19.5

Price: Rs. 10/kg

	Av. N (kg/ha)	Av. P (kg/ha)	Av. K (kg/ha)
Initial stage	299	11.8	227.5
After harvest	334	15.6	295.0

	EC							
	(dS/m)	OC (%)	Zn (ppm)	Fe (ppm)	Cu (ppm)	Mn (ppm)	B (ppm)	Si (%)
Initial								
stage	0.39	0.66	0.41	0.48	0.33	0.63	0.41	0.39
After								
harvest	0.46	0.71	0.52	0.54	0.40	0.68	0.47	0.46

Cluster village

Chaudayya Dhanapura

No. Of Demos: 3

Variety: MTU-1010

Availability of Technologies and the Sources (2018-19)

TO1: Farmers Practices

TO2: Silicon spray @ 2 ml/L, 2 sprays at

25 and 40 days after planting

TO3: Silicon spray @ 2 ml/L, 3 sprays at

25, 40 and 55 days after planting

Source: UAS, Bengaluru

Availability of Technologies and the Sources (2019-20)

TO1: Farmers Practices

TO2: Silicon spray @ 2 ml/L, 2 sprays at

25 and 40 days after planting

Source: UAS, Bengaluru

Effect of Si on growth and yield of rice

Parameter	Farmers' practice	Si @ 2ml in 25 & 40 DAP (T1)	Si @ 2ml in 25, 40 & 55 DAP (T2)	% increase (T1)	% increase (T2)
1. Plant height (cm)	84.5	82.7	81.1	-2.1	-4.2
2. No. of productive tillers	11.2	12.1	13.5	7.2	16.8
3. No. of grains/panicle	124.1	125.5	130.6	1.1	5.0
4. Test weight (g)	23.7	24.4	25.0	2.9	5.1
5. Grain yield (kg/ha)	6429.7	6619.3	6819.3	2.9	5.7
6. Straw yield (kg/ha)	8091.9	8305.1	8431.8	2.6	4.0
7. Cost of cultivation (Rs.)	45600.0	35340.0	35600.0	-29.0	-28.1
8. Gross Return (Rs.)	135023.0	139006.0	143206.0	2.9	5.7
9. Net return (Rs.)	89423.0	103666.0	107606.0	13.7	16.9
10. B:C ratio	3.0	3.9	4.0	24.7	26.4

Price: Rs. 2100/q

	Av. N (kg/ha)	Av. P (kg/ha)	Av. K (kg/ha)
Initial stage	290.8	12.67	222.5
After harvest	315.0	15.00	272.5

	EC (dS/m) O	C (%) Z1	n (ppm) Fe	e (ppm) C	u (ppm) M	n (ppm)B	(ppm) Si	. (%)
Initial								
stage	0.290	0.527	0.469	0.351	0.386	0.414	0.437	1.160
After								
harvest	0.390	0.660	0.508	0.485	0.477	0.544	0.455	1.370

FLD-1

Demonstration of micronutrient application in early crop growth stages of Sugarcane (OFT to FLD)

Cluster villages

Chaudayya Dhanapura

No. Of Demos: 10

Variety: Co-80166

Availability of Technologies and the Sources

TO1: Micronutrient through RDF

TO2: Foliar Spray of 2.5 kg FeSO4 + 2.5 Kg of ZnSO4 alongwith 2.5 kg of Urea in 250 litre of water at 50 & 100 DAP

Source: TNAU, Tamil Nadu

OFT-2

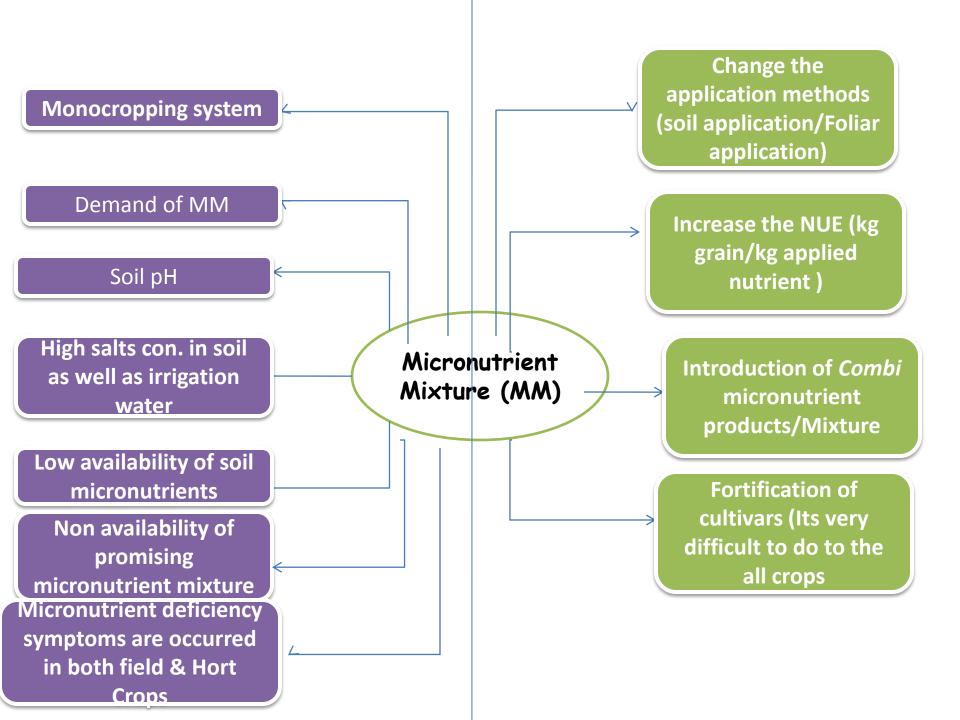
Effect of micronutrient application in early crop growth stages on growth and yield of Sugarcane

	FP	ТО	% Increase
Plant height (cm)	260.5	267.6	2.6
Cane length (cm)	223.0	226.0	1.3
Internodal length (cm)	12.0	12.9	7.5
Internodes (Nos.)	17.8	17.9	0.4
Yield (t/ha)	92.5	103.5	10.6
Cost of cultivation (Rs.)	68500.0	61000.0	-12.3
Gross Return (Rs.)	231250	258750	10.6
Net return (Rs.)	162750.0	197750.0	17.7
B:C	3.4	4.2	20.4

Price: Rs. 2500/t

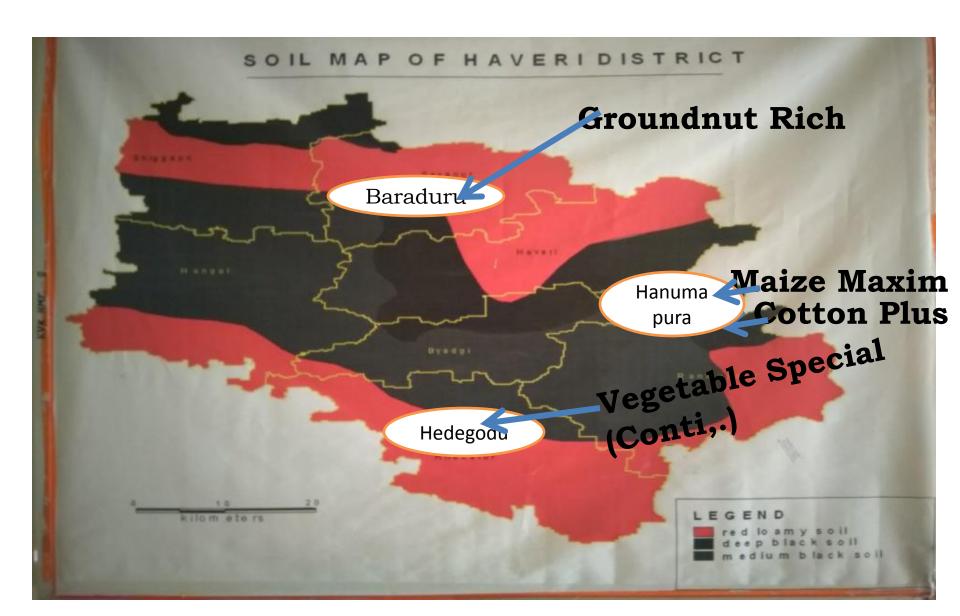
Micronutrients through FDF: Soil application of 20 kg/ha ZnSO₄ +20 kg/ha FeSO₄

TO: Foliar spray of 2.5 kg FeSO4 + 2.5 kg of ZnSO4 along with 2.5 kg of Urea in 250 litre of water at 50 and 100 DAP


	Av. N (kg/ha)	Av. P (kg/ha)	Av. K (kg/ha)
Initial stage	291.8	12.6	222.5
After harvest	310.0	13.00	242.5

	EC (dS/m) O	C (%) Z1	n (ppm) Fe	e (ppm) C	u (ppm) M	n (ppm)B	(ppm) Si	. (%)
Initial stage	0.290	0.527	0.469	0.351	0.386	0.414	0.437	1.160
After harvest	0.390	0.660	0.508	0.485	0.477	0.544	0.455	1.370

MM	Benefits	Source
Groundnut Rich	Decreases flower shedding Increases pod number and size Increases yield up to 20 per cent Increases drought tolerance	
Cotton Plus	Reduces flower and square shedding Improves boll bursting Increases seed cotton yield up to 18 per cent Increases drought tolerance	atore
Maize Maxim	Improves grain filling Increases grain yield up to 20 per cent Improves drought tolerance	TNAU, Coimbatore
Sugarcane Booster	Increases internodal length Increases internode number Increases sugar content Increases yield up to 20 per cent	Ž Ž
Pulse Wonder	Decreases flower shedding Increases yield up to 20 per cent Increases drought tolerance	
Banana Special	Increases finger/bunch Fruit weight Increases yield up to 15-20 per cent	engaluru
Vegetable Special	Increases yield up to 20 per cent	IIHR, Benga
Citrus Special		≣


Selected crops of Haveri	Area (ha)	Production (t)	Productivity	Increased yield due to micronutrie nt mixture (%)	Gap in production (t)due to MM	Gap in productivity (kg/ha) due to MM
Cotton	74900	200975	368	18	36175.5	66
Maize	189485	513005	3442	20	10201	688
Groundnut	20939	32759	1560	20	6551.8	312
Tomato	4474	134225	30000	20	26845	6000

Micronutrient	Category
Zn	Low
Fe	Low
Mn	Medium
Cu	Medium
В	Low
Mo	Low

Micronutrient Mixture	Concentration	Source of technology
Groundnut Rich	Zn- 2.0 % Fe- 2.0 % Mn-1.0 % B- 0.3 %	
Cotton Plus	Zn- 2.5 % Fe- 2.5 % Mn-1.0 % B- 0.3 %	TNAU, Coimbatore
Maize Maxim	Zn- 3.0 % Fe- 2.5 % Mn-1.0 % B- 0.5%	TNAU,
Sugarcane Booster		
Pulse Wonder		
Banana Special		5
Vegetable Special	Zn- 3.0 % Fe- 2.5 % Mn-1.0 % B- 0.5%	IIHR, Bengaluru
Citrus Special		=

Demonstrations of COTTON PLUS (Cotton crop), Maize Maxim (Maize crop) and Groundnut Rich (for Groundnut crop) for 2019-20

Demonstration of COTTON PLUS as part of ICM in cotton

NEW

Area (ha): 74900 Production (t) 200975 Productivity (Kg/ha)	368
---	-----

Cluster village	:	Hanumapura
Major crops/enterprises of the village	:	Onion, Vegetables, Maize

Crop/ enterprise	Problem	Availability of Technologies and the Sources	Nature /mode of intervention
Cotton/ Micronut rient Mixture	•High level of flower & square shedding •Boll Bursting	•Farmers Practices •Spray @ 2.5 kg of Cotton Plus/acre with 200 litre of water at flowering and boll formation stages (Critical input: Cotton Plus) Source: TNAU, Coimbatore	 ▶ Front line demonstration ▶ Training – On & Off campus ▶ Method demonstration (Foliar Spray) ▶ Result demonstration (yield and economics) ▶ Field day

Package of Practices:

- 1. FYM-5t/acre/Vermicompost-1 t/acre
- 2. N:P:K=80:40:40 kg/ha
- 3. 3. When reddening is occurs in leaves- application of 5 % MgSO4 + 1 % Urea + 0.1 % ZnSO4 as foliar spray on 50 & 80th DAS

Area (acre)

10

No. of demos.

10

- 4. Use of bhendi as trap crop
- 5. Need based application of Fipronil at 1 ml/l of water for management of sucking pests
- 6. Setting up of pheromone traps @ 12/acre for management of PBW
- 7. Spraying of profenophos @ 2ml/l at 70 DAS

Budget (Rs.)

10380

Cost/demo(Rs.)

1380

FLD-

Demonstration of Maize Maxim as a part of ICM in Maize

NEW

_	Area	(ha)

Cluster villages

189485

Production (t) **513005**

Productivity (Kg/ha)

Hanumapura

Major crops/enterprises of the village

Onion, Vegetables, Cotton

3442

Crop/ enterprise	Problem	Availability of Technologies and the Sources	Nature /mode of intervention
Maize/	•Low in grain filling	• Farmers Practices	➤ Front line demonstration
Micronutr	•Micronutrient	•Spray @ 3.0 kg of Maize	> Training – On & Off
ient	deficiency	Maxim/acre with 200 litre of	campus
Mixture	symptoms	water at Tassel initiation and grain	➤ Method demonstration
	•Low in drought	filling stages	(Foliar Spray)
	resistance	(Critical input: Maize Maxim)	> Result demonstration
		Source: TNAU, Coimbatore	(yield and economics)
			➤ Field day

Package of Practices:

- 1. FYM-5 t/acre
- 2. Seed treatment Azospirillum at 600 g/acre
- 3. N:P:K = 60:30:30 kg/ha

Area (acre)	No. of demos.	Cost/demo (Rs.)	Budget (Rs.)
10	10	2180	21800

1110a (ha) 2000 110aaction (v) 22.00 110aactivity (lighta) 1000	Area (ha)	20939	Production (t)	32759	Productivity (Kg/ha)	1560
---	-----------	-------	-----------------------	-------	-----------------------------	------

Cluster villages	:	Baradur
Major crops/enterprises of the village	:	Onion, Vegetables, Cotton

Crop/ enterprise	Problem	Availability of Technologies and the Sources	Nature /mode of intervention
Groundnu t/ Micronut rient Mixture	 Higher in flower shedding Micronutrient deficiency of soil Low in quality of groundnut seed 	 Farmers Practices Spray @ 2.0 kg of Groundnut Rich/acre with 200 litre of water at flower initiation and pod filling stages (Critical input: Maize Maxim) Source: TNAU, Coimbatore 	 ▶ Front line demonstration ▶ Training – On & Off campus ▶ Method demonstration (Foliar Spray) ▶ Result demonstration (yield and economics) ▶ Field day

Package of Practices:

- 1. FYM-5 t/acre
- 2. N:P:K=25:50:75 kg/ha (N & K apply in three splits viz., 50 %N & K as basal +25 % N & K @ 20 DAS + 25 % N & K @ 45 DAS
- 3. Seed treatgment Trichoderma viride @ 4 g/kg seeds

~•	Seed viewsillen Illenouelina villae e	1 8/118 5000				i
4.	Gypsum- 400 kg/ha @ 45 DAS	Area (acre)	No. of demos.	Cost/demo(Rs.)	Budget (Rs.))
		10	10	1180	11800	

Scientist (Soil Science)-Training programmes

Crop/ Enterprise	Activity as leader	Other members			
	FARMERS/ FARM WOMEN				
SHM	Soil Health Management in vegetable crops				
SHM	Soil Health Management in plantation crops				
SHM	Soil Health Management in flower crops	Horticulture			
Kharif	Mannu Aarogya Abhiyana	Ag Entomology			
Rabi	Mannu Aarogya Abhiyana	Agronomy			
Kharif	Soil Health & Biofertilizers	8 3			
Rabi	Soil Health & Biofertilizers				
RURAL YOUTH					
Biofertilizers	Importance of Biofetilizers and its use	Horticulture			
SHM	Importance of Soil Health Card and Soil Health	Ag Entomology			
	Management	Agronomy			
EXTENSION PERSONNEL					
SHM	Soil Health Management for Major crops of Haveri	Horticulture			
CLIM	Soil Health Management for Major horticultural	Ag Entomology			
SHM	crops of Haveri	Agronomy			
VOCATIONAL TRAINING					
Green Manuring	Soil sample collection and Uses of green mannuring	Horticulture Ag Entomology			
2:- 20:-0:1-8	crops	Agronomy			

HORTICULTURE

Abstract of OFTs and FLDs

FLD/OFT/Cluster FLD	No. of demo.	Amount (Rs.)
OFT	02	37800
FLD	03	43100
Total	05	80900

Name	Designation	No. of OFT	No. of FLD
Mr. Harish D K	Scientist (Horticulture)	02	03

Productivity (q/ha)

11.91

OFT-1

Assessment of chilli hybrids for yield potential, disease & pest resistance

Contd..

Problems

- Poor soil fertility
- Lack of knowledge on improved varieties
- Incidence of pest and diseases

Arka Megana KBCH-1

Village	Chikkeri-Hosalli
Taluka	Hanagal
No. of demo	03
Area (ha)	0.6
Source of	IIHR & UAS, B
technology	

Assessment of chilli hybrids for yield potential, pest and disease resistance contd

Technology option	Source of Technology
TO ₁ Farmer practices	-
TO ₂ KBCH-1	UAS, Bengaluru
TO ₃ Arka Meghana	IIHR, Bengaluru

Critical Inputs Provided & Total Amount (DBT)

	Inputs	Qty	Cost/trial
T_1	Farmer practices	-	-
T_2	KBCH-1	60 gm	1500
T_3	Arka Meghana	60 gm	2200
Amount/ Tria			3700
Total Amount for 3 trials			11100

Parameters

- No. Fruits /plant
- Disease incidence (%)
- · Yield (q/ha)
- Economics

Implementing Scientist: Scientist (Horticulture)

Effect of chilli hybrids on yield potential, pest and disease resistance and economics

Parameter	Farmers' practice (TO ₁)	KBCH-1 (TO ₂)	Arka Meghana (TO ₃)	% Increase (TO ₂)	% Increase (TO ₃)
Number of fruits/plant	153	322	212	52.4	27.8
Disease incidence (%)	18.4	13.5	8.6	-36.7	-114.0
Yield (q/ha)	240	320	330	25.0	27.3
Cost of Cultivation (Rs.)	71000.0	79666	78333	11	9
Gross return (Rs.)	360000.0	480000	495000	25	27
Net return (Rs.)	289000.0	400333	416666	28	31
B:C ratio	5.1	6.0	6.3	15	19

Farmers' Feedback The new variety arka meghana performed better respect to disease, good crop stand and higher yield

OFT-2

Effective control of Panama wilt by using stem injection method in Banana

New

Dist. area (ha)	4302	Production (t)	124311	Productivity (q/ha)	28.90
i					

Problems

- Lack of knowledge about improved cultural practices
- Poor soil fertility
- Lack of knowledge on improved varieties
- Incidence of pest and diseases

Village	Yadagoda
Area (ha)	1.20 ha
No. of Demo	03
Taluka	Hirekerur
Source of technology	UHS, B & UAS, D

• ಹರ್ಷವರ್ಧನ ಪಿ.ಆರ್. ಹಾವೇರಿ: ಜನ-ಚಾಸುವ

ಮುಸ್ತಮದ್ದು ಸೀರುಪ್ರದಲ್ಲ ಸೀರುಪ್ರದಲ್ಲ ಅದರೆ, ಭಾಗೇಗಳಿಗು ಮುಟ್ಟುಮದ್ದು ಹಿಗೆಡಿ ಚಿಕಿಕ್ಕೆ ಸೀರುಪರಿ ಹೆರುವಾಗಿದೆ ಮತ್ತು ಸೀಗಿತ ಮಾತನಿಮ್ಮಾರಾದ ಮತ್ತು ಸೀಗಿತ ಮಾತನಿಮಾದ್ದಿರುವ ಪ್ರಾಕ್ಷಣ ಮಾತನೆ ಮತ್ತುಮಿದ್ದು ಸೀರುವ ಮಾರಕ ಪನಾಮ ದೇಶ್ ಸಿರುಪ್ರದಲ್ಲ ಮಾರಕ್ಕಾರಪ್ರದರ್ಶ, ಅವು ಗಳ ರೋಗ ಸಿರುಪ್ರದರ್ಶ ಸಕ್ಷಮನ್ನು ಮತ್ತುಮದಲ್ಲಿ ಸಭರೋಶಕ ಪಕ್ಷಮನ್ನು ಪ್ರಾಥ್ಯ ಹೆತ್ತುಮದಲ್ಲಿ ಸಭರೋಶಕ ಸಕ್ಕಮನನ್ನು ಮಾರಕ್ಕಾರ್ತಿ ಪ್ರಕ್ಷಮನ್ನು ಮಾರಕ್ಕಾರಿಸುವಾರ ಪಕ್ಷಕ್ಕೆ ಪ್ರತಿ ಪತ್ರಿತಿ ಮಾರಕಿಸುವಾರ

ಮಾಲಕ ಪರಾಮ ದೇಶ್ ಪ್ರತ್ಯಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರಾಸ್ತ್ರ್ಯಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರಾಸ್ತ್ರ್ಯಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರಾಸ್ತ್ಯಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರವ್ಯಾಪ್ ಪ್ರಾಪ್ ಪ್

ಮುಖ್ಯಾಂಶಗಳು 🍃

ಹಣ್ಣಿಗೆ ಬೇದಿಕೆ . ● ಚುಚ್ಚುಮಧ್ಯಿನ ಮೂಲಕ ಖರ್ಚು ಇಳಿಕೆ

ಬಾಳಗಾಣೆ ಚುಗ್ರಮದ್ದರು ನೀಡುತ್ತಿರುವ ಹಾವೇರಿಯ ರಾಜಕಿಸಿಸ್ಕೂರಿನ ಹನುಮನಮಟ್ಟಿಯ ಕೃಷಿ ಮಹಾವಿದ್ಯಾಲಯದೆ ಕ್ರಿಡಿಸಿ ನೀಡು

ඩා ජාතාධිත් නිර්ගයේ ම සුඛණාණක සිංහල් ජාතයේදා සොද්දා පණක නිංජ පන්දේලා අං ජාත්තයක්වේ අමතු කතය ජෝ පනතුදු කලේකන්වේ. සා ජාත්තයේ සහසේවේ සම්බන්ධ පරිද්ධ අවස්ථාවේ සහසේවේ සම්බන්ධ පරිද්ධ අවස්ථාවේ සහසේවේ සම්බන්ධ පරිද්ධ

ಮತ್ತಿತರಣಿಗಳಲ್ಲಿ ಶ್ರಯೋಗ ಯತ್ತು ಕಂಡಿದೆ. ಬಾಹುತ್ತಿದ್ದ ಬಳೆ ಗಡಗಳು ಸಕ್ಕವಾಗಿ ಉತ್ತಮ ಇಳುವರಿ ನೀಡಿವೆ. ನೀರತ ಮಿಶಿಯಪ್ಪೇ ದ್ರಾವಣಪ್ಪಾ ಪ್ರತಿ ನಿಡಕ್ಕೂ ನೀಡಬೇಕು ಎಂಬ ಸ್ವಾಧ್ಯಾಪಕ ಹಾರವಿಕುಮಾರ ಎಂ.ಆರ್ ತಿಳಿಸಿದರು. ಅಂತರದಲ್ಲಿ ಮತ್ತೊಮ್ಮೆ ನೀಡಬೇಕು. ತೋಟಗಳಿಂದ ಕಂದುಗ

Booking Employant, 25 Prilling American contain an observation and contained contained and contained contained and contained contained contained and contained contained and contained con

ಬದಕ್ಕೆ ಹಾಕಲು ೯೯ರಿಂದ s ಖರ್ಚಾಪನೆ, ಚುಟ್ಟಬುನ್ನಿನ ಮಾರ್ಕ ನೀಡುವ ಕಾರಣ 20 ಪೈಸೆ ಪೆಚ್ಚ ನಗಲುತ್ತದೆ ಡಾ.ರವಿತುಮಾರ ಎಎ.ಆರ್. ಸ್ರಾಧ್ಯಾಪಕ್ಕ ಕಾರುವವನ್ನು ಕೃತಿ ಮರೇಜ

	Technology options	Source of Technology
TO_1	Farmer practices	-
ТО	Drenching with copper oxychloride @ 3	UHS, Bagalkot
TO_2	gm/liter of water	
	Stem injection with 3 gm of	UAS , Dharwad
TO	carbendazim + 3 gm of copper	
TO_3	carbendazim + 3 gm of copper oxychloride + 3 gm of boric acid per liter	r
	of water	

Critical Inputs Provided & Total Amount			
Inputs	Qty	Cost/trial	
Farmer practices	-	-	
Copper oxy chloride	15.5 kg	8800	
carbendazim	500 gm	250	
Boric acid	500 gm	250	
Amo	9300		
Total Amount f	27900		

Implementing Scientist : Scientist (Horticulture)

Dist. area

ICM in Betelvine

172997.2

Production

(Lakhs)

8.5

(ha)	
Village	Hanumapur
Area (ha)	2.0 ha
No. of trials	05
Taluka	Ranebennur
Source of technology	TNAU/ JNKVV, MP

2033

Problems

- •Low yield (10-15 lakhs leaves/ha)
- Incidence of Wilt (15-20%)

Technology to be demonstrated

(Lakhs/ha)

Productivity

- Trichoderma, Pseudomonas enriched FYM during month of June & July
- [☞] Neem cake application during June & July (200 g/vine)
- Lowering of vine in the month of December
- © Carboxin (0.2 %) drenching during lowering

Critical	Qty / Demo	Cost /	No. of	Total
input	(0.5 ac)	Demo	Demo	cost(Rs.)
Pseudomonas	10 kg	1500	05	22000
Trichoderma	10 kg	1500		
Carboxin	1kg	1400		
	Total (Rs.)	4400		

Parameters

- ·Yield/plant
- ·Yield (No./ha)
- Disease incidence (%)
- Economics

Implementing
Scientist:
Scientist
(Horticulture)

Off campus training on ICM in Betelvine

Input implementation

Treatment imposition

Result -2018-19 -Under progress

Treatment imposition

Observation from farmers

Observation from farmers

Micronutrient Management in Onion using vegetable special

Dist. Area (ha)	6807.35	Production	on (t)	141039	Productivity (t/ha)	20.72	
Village		Hanumapur					
Area (ha)			4.0 ha				
No. of Demo			10				
Taluka	Taluka Ranebennur						
Source of technology			IIHR, Hesarughatta				

Crop/ enter- prise	Problems	Availability of Technologies and the Sources	Nature /mode of intervention
Onion	•Micronutrient deficiency •Imbalance nutrition •Low yields	Check: FP Demo: Application of vegetable special (5g/ltr) Growing maize crop as barrier crop all along the border Application of FYM pre mixed with Trichoderma viride before planting Application of pre emergent herbicide pendimethalin @0.2% Application of Azospirullum and PSB at 5kg/ha Application of 75:40:40:20 kg NPKS/ha (Full of PKS and 1/3 of N need to be applied at the time of transplanting and remaining 2/3 of N in two equal splits at 30 and 45 DAT) Source: IIHR, Bangalore & DOGR	>Front Line Demonstration >Soil analysis before and after the crop >Yield

Area (acre)	No. of demos	Cost/Demo	Budget (Rs.)
10	10	980	9800

Name of critical input	Qty Per trial	Cost per Trial (Rs.)	No. of trials	Total cost for the Intervention (Rs.)
Application of vegetable special	(5g/ltr) 150/kg	980	10	9800
Soil analysis before and After the crop	380			

Implementing Scientist : Scientist (Horticulture)

Integrated Crop Management in Banana

Dist. Area (ha)	4302	Production	on (t)	124311	Productivity (t/ha)	28.90	
Village			Yadagoda				
Area (ha)			4.0 ha				
No. of Demo			10				
Taluka			Hireker	ur			
Source of ted	chnology		IIHR				

Crop/ enter- prise	Problem	Availability of Technologies and the Sources	Nature/mode of intervention
Banana	•Micronutrient	Check: FP	≻Front Line
	deficiency	▶Demo: Tissue culture -G9	Demonstration
	•Imbalanced fertilizer	➤Growing sesbenia grandiflora as an	➤Soil analysis before and
	application	wind breaker all along the border	after the crop
	•Low yields due poor	➤ Enrichment of FYM with	≻Yield
	management	Trichoderma, pseudomonas and PSB	
	_	before the planting	
		>Application of Banana special	
		(5g/ltr)	
		▶Bunch feeding with urea and SOP	
		@7.5 gm/bunch	
		Source: IIHR, Bangalore, UAS(B)	

Area (acre)	No. of demos	Cost/Demo	Budget (Rs.)
10	10	1130	11300

Name of critical input	Qty Per trial	Cost per Trial (Rs.)	No. of trials	Total cost for the Intervention (Rs.)
Application of banana special	(5g/ltr) 150/kg	1130	10	11300
Soil nutrient analysis before and After the crop	380			

Implementing Scientist : Scientist (Horticulture)

FLD-4

Demonstration of micronutrients in Banana using Banana special (Conti,..)

Cluster villages

Rettihalli, Yadagodu

Availability of Technologies and the Sources

Check: FP

Demo: Application of banana

special (5g/ltr)

Source: IIHR, Bengaluru

Parameter	Farmer practice	Banana Special	% Increase
1.Pseudo stem girth (cm)	72.9	76.68	5.5
2. Pseudo stem height (m)	2.2	2.604	18.1
3. No. Of leaves/plant	13.9	16.9	21.6
4. No. Of hands/bunch	12.3	14.3	16.3
5. No. Of fingers/bunch	17.6	18.58	5.7
6. Finger weight (g)	121.5	129.4	6.5
7. Yield (t/ha)	42.4	44.7	5.5
8. Cost of cultivation (Rs.)	74100	68000	-8.2
9. Gross Return (Rs.)	423640	446760	5.5
10.Net return (Rs.)	349540	378760	8.4
11.B:C ratio	5.7	6.6	14.9

AGRIL. ENTOMOLOGY

Contd.

Management of Leaf hopper and powdery mildew in Mango

Farming situation	Rainfed
No. of Trials	03
Area (ha)	01
Village	Chikkeri - Hosalli
Taluka	Hanagal

Problems identified

Incidence of leaf hopper and powdery mildew and low fruit yield

Affected area: 35-40%

	Technology Options	Sourse of Technology
TO ₁	Farmers' practice	-
TO ₂	Application of Imidacloprid @ 0.25 ml + Hexaconazole 1 ml/L @ flower initiation stage and @ fruit setting stage	UHS Bagalkote
TO ₃	Application of Lambdacyhalothrin @ 0.5 ml + Difenconazole 1 ml/L @ flower initiation stage and @ fruit setting stage	IIIHR Bengalore

Critical Inputs			
	Inputs	Qty	Cost/trial
TO ₁	-	-	-
TO ₂	Imidacloprid	100 ml	500
	Hexaconazole	500 ml	650
TO ₃	Lambda cyhalothrin	500 ml	350
Difenconazole		500 ml	2500
	4000		
Total Amount for 3 trials			12000

Management of Leaf hopper and powdery mildew in Mango- 2018-19

Farming situation	Rainfed
No. of Trials	03
Area (ha)	0.6
Village	Alalageri
Taluka	Byadagi

Problems identified

- •Incidence of leaf hopper and powdery mildew
- Low fruit yield

	Technology Options	Sourse of Technology
TO ₁	Farmers' practice	-
TO ₂	Application of Imidacloprid @ 0.25 ml + Hexaconazole 1 ml/L @ flower initiation stage and @ fruit setting stage	UHS Bagalkote
TO ₃	Application of Lambdacyhalothrin @ 0.5 ml + Difenconazole 1 ml/L @ flower initiation stage and @ fruit setting stage	IIIHR Bengalore

Result Under Progress

Problems identified

	Village	Choudadanapur	
	Taluk	Ranebennur	
	No. of Demo.	10	
	Area (ha)	04	
	Name of the Variety	Private Hybrid	
	Critical input	Qty / Demo	Cost /Demo
- 1			

•		
Critical input	Qty / Demo	Cost /Demo
Trichoderma	500 g	65
Azospirillum	500 g	50
ZnSO ₄	10 kg	1200
FeSO ₄	10 kg	1250
Nomuraea	1 kg	250
Pheromone traps with	12 No's	960
Lure		
Emamectin Benzote	100 g	450

Total Rs./ Demo.

- Low Yield
- Pest incidence
- Micro nutrient deficiency

Affected area: 40-50%

Technology to be demonstrated

- Seed treatment with bio-fertilizer and bio pesticides
- [™]Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg Vermicompost at the time of sowing
- Setting up Pheromone traps @ 12 / ac for Mass trapping
- fall army worm
- **☞** Application of *Nomuraea rileyii* @ 2 g/L of water

4225/

Parameters

- Plant height (cm)
- Yield (q/ha) FAM incidence
- Economics

Team members

16.09

Ag. Ento. **Soil Scince Agronomy**

Sr. Sci. & Head

Integrated Crop Management in Maize-2018-19

Village	Kamadoda
Taluk	Ranebennur
No. of Demo.	10
Area (ha)	04
Name of the Variety	CP-818
Date of Sowing	June – 2018
Date of Harvest	October - 2018

Results

Technology Demonstrated	FAM Larva(No/pl)	Yield (q/ha)	Yield increase(%)
Demo.	0.75	53.88	9.97
Farmers Practice	1.38	49.00	3.37

Economics

Technology Demonstrated	Cost of cultn.(Rs/ha)	Gross Return(Rs/ha)	Net Return(Rs)	B:C ratio
Demo.	23396/-	83511/-	60115/-	3.57
Farmers Practice	26556/-	75955/-	49398/-	2.86

Farmers' Feedback

Application of ZnSO₄ and FeSO₄ and proper management of Fall armyworm resulted in better growth and yields

Conclusion

Enhanced yield can be obtained by adopting ICM technologies in maize

Dist. area (ha) 7450 Production (t) 2366 Productivity (q/ha)

Contd.

Integrated Crop Management in Soybean

Village	Baradur
Taluk	Savanur
No. of Demo.	10
Area (ha)	04
Name of the Variety	DSb-23

Problems identified

- Use of local variety
- Poor nutrient management
- •Incidence of Defoliator

Affected area: 30-35%

Technology to be demonstrated

- **Use of HYV DSb-23**
- Seed treatment with vitavax, bio-fertilizer and bio pesticides
- Management of defoliators

Critical input	Qty / Demo	Cost /Demo
Seeds	25 kg	1800
Trichoderma	250 g	35
PSB	250 g	25
Rhizobium	250 g	1200
Nomuraea	1 kg	250
Vitavax power	250 gm	525
To	2660	
Total Rs	26600/-	

Parameters

- •Yield (q/ha)
- •Defoliator incidence
- Economics

Team members
Ag. Ento.
Agronomy
Sr. Sci. & Head

4.12

integrated Crop Management in Soybean-2018-19

Village	Arelakamapur
Taluk	Ranebennur
No. of Demo.	10
Area (ha)	04
Name of the Variety	JS-335
Date of Sowing	June – 2018
Date of Harvest	October - 2018

Technology demonstrated

- **☞** Use of HYV JS-335
- Seed treatment with bio-fertilizer and bio pesticides
- Management of leaf eating caterpillars

Results

Technology Demonstrated	LEC Larva (No/mt row)	Yield (q/ha)	Yield increase(%)
Demo.	1.12	22.67	0.00
Farmers Practice	1.74	20.78	9.09

Economics

Technology Demonstrated	Cost of cultn.(Rs/ha)	Gross Return(Rs/ha)	Net Return(Rs)	B:C ratio
Demo.	20250/-	67998/-	47748/-	3.36
Farmers Practice	19500/-	62331/-	42831/-	3.20

Farmers' Feedback

Obtained better yield and profit by following ICM

Conclusion

Enhanced yield can be obtained by adopting ICM technologies in soybean

Dist. area (ha) | 14826 | Production (t) | 372062 | Productivity (t/ha) | 69.0

New

Integrated Crop Management in Sugarcane

Village	Chikkeri-Hosalli
Taluk	Ranebennur
No. of Demo.	10
Area (ha)	04
Name of the Variety	Co-86032

Problems identified

Low yield

Poor nutrient management

Poor pest and disease management

Affected area: 40-45%

Technology to be demonstrated

- Application of FYM fortified with Azospirallum and PSB (4 kg each for 10t FYM)
- Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing

 Soil application of FeSO4 & ZnSO₄ @ 25 kg/ha along with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost at the time of sowing with 50 kg vermicompost a
- **☞ Management of Rootgrub by** *Metarhizium anisopleae*
- *Release of *Micromus igorotus* predadator against sugarcane woolly aphid (if incidence of pest noticed)

Parameters

- •No. of tiller/hill
- •Pest and disease incidence
- •Yield (q/ha)
- •Economics

Critical input	Qty / Demo	Cost /Demo
Azospirallum	4 kg	400
PSB	4 kg	400
Metarhizium	5 kg	1250
ZnSO ₄	10 kg	1200
FeSO ₄	10 kg	1250
Total Rs./ Demo.		4500
Total I	45000/-	

Team members

Ag. Ento.
Agronomy
Soil scientist
Sr. Sci. & Head

Activities calendar of Scientists

Activities calendar of Scientist (Ag. Entomology)

Village	Crop	Activity as leader	Other members of the team	Budget Proposed	Remarks
		TECHNOLOGY ASSI	ESSMENT		
Chikkeri Hosalli	Mango	Management of Leaf hopper and powdery mildew in Mango	Horticulture Sr. Sci. & Head	12000/-	Cont.
		FRONTLINE DEMON	STRATION		
Choudadan apur	Maize	ICM in Maize	Soil Scince Agronomy Sr. Sci. & Head	42250/-	Cont.
Baradur	Soybean	ICM in Soybean	Soil Scince Agronomy Sr. Sci. & Head	26600/-	Cont.
Chikkeri Hosalli	Sugarcane	ICM in Sugarcane	Soil Scince Agronomy Sr. Sci. & Head	45000/-	New

Revolving Fund utilization by the SMS (Ag. Entomology)

Production Units	Enterprise	Physical Target for the year	Approximate Expenditure (Rs.)	Approximate Revenue (Rs.)
Trichoderma	Bio control Lab	10 q	25000/-	1,05,000/-

Scientist (Ag. Entomology)-Training programmes

Crop Enterprise	Activity as leader	Other members		
FARMERS/ FAR	M WOMEN			
Mango	Management of Leaf hopper and powdery mildew in Mango -02			
Maize	ICM in Maize -02	Agranamy		
Soybean	ICM in Soybean -02	Agronomy Soil Science		
Sugarcane	ICM in Sugarcane -02	Horticulture		
Chilli	Management of leaf curl complex	norticulture		
Cabbage	Management of DBM and Blackrot			
RURAL YOUTH				
Apiculture	Bee keeping	Agronomy		
	, -	Horticulture		
Sericulture	Silkworm rearing	Agronomy		
Soil Science				
	EXTENSION PERSONNEL			
Kharif crops	ICM in different crops	Agronomy		
		Horticulture		
VOCATIONAL TRAINING				
Trichoderma	Production of <i>Trichoderma</i>	Agronomy		
SPONSORED TRAINING				
Major Crops	Pest and disease management in major crops of Haveri district	Agronomy		
Vegetables	Use of bio rationales for the management of Vegetable pests	Horticulture		

Animal Science

Assessment of Detoxified karanja cake as protein source on growth of lambs

Problems
High cost of feeding
balanced growth ration
to Lambs and poor
growth

Cluster Village	Hanumapur
No. of Trial	02
Unit size (Nos)	10

Relevant information of Detoxified Karanja Cake

- Protein is an important macro- nutrient ad an expensive constituent of animal diet
- Price escalation of protein source such as GNC, SBC will have bearing on profitability of farm
- Detoxified karanja cake is nconventional protein source containing high amount of crude protein
- As such karanja cake contain anti nutritional factor such as karanjin and pongamol
- These anti nutritional factor detoxified by 1-2% NaOH treatment for 24 hrs
- The Detoxified protein can be used to replace upto 50% of conventional protein source in concentrates
- This is technology of NIANP, Bengaluru

Technology options	Source of Tech.
TO ₁ Farmers' practice:	_
Maize + GNC + Detoxified Karanja	NINP,
TO ₂ Maize + GNC + Detoxified Karanja cake (10 % of GNC)	Bangaluru

CI	itical inputs Provided d	t Total A	mount	
	Inputs	Qty	Cost/	
			trial	
T_1	-	-	-	
T_2	Maize	120 kg	2000	
	Mineral mixture	2 kg	700	
	GNC	35 kg	1500	
	Detoxified karanja cake	10 kg	1500	
	Deworming	2 L	1800	
	Total/trial 7500			
Total Amount for 2 trial 15,000				

Parameter

- Body weight (kg)
- Body length(cm)
- Chest girth(cm)
- •Body height(cm)
- •Economics

Team members: Animal Sci., Horticulture, Soil sci.

Assessment of Detoxified karanja cake as protein source on growth of lambs

Results of Assessment of Detoxified karanja cake as protein source on growth of lambs (2018-19)

Observation	Mean Body weight of T1 (Farmers Practice) (n=20)	Mean Body weight of T2 (Maize + GNC + 10% Detoxified Karanja cake) (n=20)
6 week age	7.5 kg	7.5 kg
10 week age	10.8kg	16kg
14 week	14kg	22kg
Market price	4000 /- each (20 no.)	5400/- each (20 no.)
Expenditure	8000	13000
Gross profit	80000/-	108000/-
Net profit	72000	95000

Farmers' Feedback Feeding of concentrate feed prepared by replacing 50% protein source with un-convention protein and de-worming increase lamb growth and lambs fetch more market price than the lambs only feed with maize.

Demonstration on Fodder Cafeteria

Conti.

Technology to be demonstrated: Fodder cafeteria containing single and multicut varieties of cereal and leguminous fodder supplying green fodder. The cereal and leguminous fodder grow and fed to animals in the ratio of 2:1

Cluster Village	Chikkeri , Hosahalli
No. of Demo.	5
Source of Technology	TNAU

Technology					
Critical Inputs Provided & Total Amount					
Critical input	Qty / Demo	Cost / Demo			
Multicut Jowar (COFS-31)	1.5 kg	800			
Hedge Lucerne	2 kg	1200			
African Tall Maize	4 kg	600			
Cow pea (C-8)	2 kg	400			

Total Rs. For 10 Demo,.

Total Rs./ Demo.

Problem
Identified green fodder
Low milk
vield

Parameters

- Fodder yield (q/ha)
- •Milk yield per lactation(kg)

Team members: Animal Sci., Ag. Entomology, Agronomy.

3000

15000

Results of 2018-19: Fodder Cafeteria

	Mean Milk yield (litres /day)	Milk yield /lactatio n (l)	Incom e	Expenditu re	Net profit	BCR
Demo	7.5	2287.5	59475	29500	29975	2.00
Check	6.0	1830	47580	30000	17580	1.60

Sl.no.	Fodder	Green Fodder Yield (Ton/ha)
1.	COFS-31	140
2.	African tall maize	40
3.	C-8 fodder cowpea	16

Farmers'
Feedback

Fodder cafeteria provides more amount of green fodder to cattles. Green fodder fed to cattle in the ratio of 2:1 of cereals and legumes increase milk yield.

African tall maize

Energy and non-protein nitrogen source supplementation Through Urea molasses mineral block (UMMB) as licks

Technology to be demonstrated Urea molasses mineral block as source of Energy, Protein and minerals

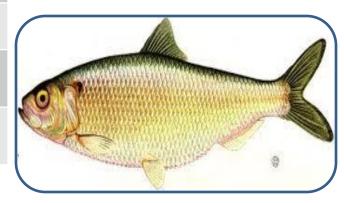
			Composition of UMMB		
Cluster Village	Baradur	Baradur		Ingradients	
No. of Demo.	10	10		Molasses	
Source of	KMF	VM E		Urea	
Technology	IXIVII	KIVIT		Salt	
recumology			Bran 15		15-25
			Cement or Quic	k lime	10
Critical Inputs Pro	ovided & Total	l Amount	D 11	T	4
Critical Inputs Pro	Qty / Demo	1 Amount Cost / Demo	Problem Identified	·Low mil	lk
		Cost /			lk
Critical input	Qty / Demo	Cost / Demo	Identified	yield •Low fat	lk
Critical input UMMB blocks	Qty / Demo 10 Nos.	Cost / Demo 400	Identified Para	yield •Low fat	lk
Critical input UMMB blocks Deworming Sodium bicarbonate	Qty / Demo 10 Nos. 500 ml	Cost / Demo 400 800	Identified	yield •Low fat	lk

Team members: Animal Sci., Horticulture, Soil Sci.

Results of 2018-19:

Energy and non-protein nitrogen source supplementation Through Urea molasses mineral block (UMMB) as licks

	Mean Milk yield (litres /day)	Milk yield /lactatio n (l)	Incom e	Expenditu re	Net profit	BCR
Demo	8.5	2590	67340	30800	36540	2.18
Check	6.5	1982	51530	30000	21530	1.74


Farmers' Feedback Supplementing UMMB to dairy animals increase milk yield, animals dry fodder intake increases, animals skin become more shiny and healthy.

Demonstration of fish culture in farm ponds

Technology to be demonstrated: Fish culture in farm ponds

Cluster Village	Chikkeri Hosahalli
No. of Demo.	05
Variety	Composite fish culture (Common carp, Rohu, Catla
Source of Technology	KVAFSU

Critical Inputs Provided & Total Amount				
Fingerlings (1/Sq meter) depending on pond size	1000	1500		
Fish feed	20kg	1500		
Total cost	/demo	3000		
Total Rs for 5	demos	15000		

Problem Underutilizat ion of farm ponds

- Weight gain
- · length

Team members: Animal Sci., Agronomy, Entomology

Activities calendar of Scientist (Animal Science)

Village	Crop	Activity as leader	Other members of the team	Budget Proposed	Rema rk
		TECHNOLOGY ASS	ESSMENT		
Hanumapur	Sheep & Goat	Assessment of Detoxified karanja cake as protein source on growth of lambs	Horticulture Agronomy Soil science Entomology	15000	Conti
		FRONTLINE DEMON	STRATION		
Chikkeri , Hosahalli	Fodder	Demonstration on Fodder Cafeteria	Horticulture Agronomy Soil science Entomology	15000	Cont
Baradur	Dairy	UMMB as Energy, protein and minerals source	Horticulture Agronomy Soil science Entomology	14000	Cont
Chikkeri , Hosahalli	Fish	Fish culture in farm ponds	Horticulture Agronomy Soil science Entomology	15000	New

Scientist (Animal Science)- Training programmes

beleitete (minima beleitete) manning programmes						
Crop	Activity as leader	Other members				
	FARMERS/ FARM WOMEN					
Sheep & Goat	Creep feeding of lambs	Agronomy,				
Fodder	Fodder production and Nuturitive vale of fodders	Soil Science, Entomology,				
Dairy	Nutritional management of dairy animals	Horticulture,				
	RURAL YOUTH					
Dairy	Scientific dairy farming	Agronomy, Soil				
Sheep & Goat	Scientific Sheep & goat farming	Science, Entomology, Horticulture,				
	VOCATIONAL					
Fodder	Fodder production and management	Agronomy, Soil Science, Entomology, Horticulture,				
Sheep & Goat	Sheep and Goat rearing	Agronomy, Soil Science, Entomology,				

Horticulture

THANK YOU